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Abstract 

The physical behavior of moving substances is highly complex, yet people can interact with them 

in their everyday lives with ease and proficiency. To investigate how humans achieve this 

remarkable ability, the present study examined human performance on an extension of the classical 

water-pouring problem (Schwartz & Black, 1999) and a substance dynamics prediction task 

adapted from previous work (Bates, Yildirim, Tenenbaum, & Battaglia, 2015). Participants were 

asked to perform three distinctively different tasks: (1) judging the relative pouring angle of two 

substance-filled containers which varied in the volume and viscosity of their contents; (2) 

predicting the resting geometry of sand pouring from a funnel onto a surface; and (3) predicting 

the dynamics of three substances—liquid, sand, and a collection of rigid balls—flowing past 

obstacles into two basins. Our findings indicate that people do not rely on simple qualitative 

heuristics based on physical attributes (i.e., viscosity, friction, and ball restitution) or perceptual 

variables (i.e., substance volume and position) when forming judgments and predictions. Instead, 

computational results from an intuitive substance engine (ISE) model employing probabilistic 

simulation support the hypothesis that humans infer future states of perceived physical situations 

by propagating noisy representations forward in time using approximated rational physics. The 

ISE model outperforms ground-truth physical models in each experiment, as well as competing 

non-simulation models based on data-driven learning approaches. Our results expand on previous 

work proposing human use of mental simulation in physical reasoning and demonstrate human 

proficiency in predicting the dynamics of physical events involving non-solid substances. 

Keywords: Intuitive physics; mental simulation; animation; reasoning; substance representation; 
prediction 
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1. Introduction 

Imagine that you are a server at a restaurant carrying dishes and beverages from a kitchen to 

customers’ tables. To do this, you must decide where to hold the dishes and at what orientation to 

prevent their contents from spilling. More impressively, you must achieve this while navigating 

through tables, chairs, and customers in the environment. In the unfortunate case that a substance-

filled container (e.g., a glass of water or a bowl of soup) topples over and spills onto an occupied 

table, you must also decide where the substance will travel and how it will interact with obstacles 

resting on the surface, hoping to intercept the fluid before it pours onto an unfortunate customer. 

We encounter similar situations frequently in our daily lives while interacting with non-solid 

substances ranging from granular materials (e.g., sugar, salt, or sand) to viscous liquids (e.g., syrup 

or honey), contained in receptacles of various shapes and sizes. How is the human cognitive system 

able to rapidly form predictions and judgments about the physical dynamics of substances to allow 

for such interactions? 

1.1. Background 

Over the past several decades, the field of intuitive physics has examined the human capacity to 

perceive and reason about situations in the physical world. These studies have primarily explored 

predictions and judgments that people make about rigid bodies—e.g., the path of a moving 

projectile or the relative weight of colliding objects (see Kubricht, Holyoak, & Lu, 2017 for a 

review)—rather than non-solid substances. Although comparatively fewer studies have explored 

human reasoning about the dynamics of substances, their results have given rise to quite perplexing 

results. For example, the Piagetian water-level-task (WLT; Rebelsky, 1964) was originally 

designed to determine at what developmental period children begin to represent and attend to 

horizontal referents in Euclidean space. In the task, an empty 2D container is rotated and displayed 
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on a piece of paper, and participants are instructed to draw the surface of the contained liquid, 

given that it intersects a specified location on the container’s inside surface (see Figure 1A). The 

correct response is to draw a horizontal line which lies parallel to the bottom edge of the paper, 

but approximately 40% of adults draw water lines that deviate from the horizontal by 5 degrees or 

more (McAfee & Proffitt, 1991). This result appears to suggest that humans do not understand that 

liquid surfaces should remain horizontal regardless of the orientation of their containers, although 

this finding has generally been attributed to the mental representation of substance position relative 

to a rotated frame of reference fixed to the container (see McAfee & Proffitt, 1991). In other words, 

since there are no spatial referents near the container images to gauge rotation (e.g., a line 

indicating the ground or a vertical wall), the container edges themselves must be used as the 

“coordinate axes” for the represented situation. This interpretation is reinforced by research 

showing that employees in professions where containers are interacted with regularly (e.g., 

waitresses and bartenders) succumb to more errors on the WLT than employees working container-

free jobs (Hecht & Proffitt, 1995). 

 

Figure 1. Stimulus images from (A) the water-level task (WLT) and (B) the water-pouring 
problem (WPP). (A) The solid line indicates the correct response where the surface of the 
contained water is horizontal; the dashed line indicates an incorrect response where the liquid’s 
surface is rotated 5∘ from the correct position, in the direction of container rotation. (B) In the 
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WPP, the correct response is that the thinner container should spill last if rotated to the same degree 
as the wider container. 

It is also likely that the impoverished format in which the problem was presented (i.e., on 

paper at a single time point) prevented participants from utilizing their intuitive knowledge about 

the physical behavior of substances in the real world, leading to their erroneous predictions. While 

the status of physical systems in the natural environment can be inferred and recognized from rich 

(frequently updated) visual inputs, explicit tasks utilizing static imagery convey comparatively 

little information. Indeed, research in intuitive physics has demonstrated inconsistencies between 

human performance on explicit and implicit reasoning tasks (Kaiser, Proffitt, Whelan, & Hecht, 

1992; Kozhevnikov & Hegarty, 2001; Krist H. , 2000; Krist, Fieberg, & Wilkening, 1993; Smith, 

Battaglia, & Vul, 2013). As shown in many studies, people succumb to systematic errors when 

explaining a physical situation using idiosyncratic descriptive knowledge given impoverished 

visual information (e.g., drawing the status of a static situation across time) but can form accurate 

predictions and judgments about situations that are depicted dynamically via rich 3D visual 

information (Battaglia, Hamrick, & Tenenbaum, 2013; Kaiser, Proffitt, Whelan, & Hecht, 1992; 

Kubricht, Holyoak, & Lu, 2017; Smith, Battaglia, & Vul, 2013; Ye, et al., 2017). Thus, the WLT 

does not appear to trigger the commonsense knowledge people have about constraints in the 

physical world, such as early emerging sensitivity to core physical principles (see Baillargeon R. 

, 2004; Hespos, Ferry, Anderson, Hollenbeck, & Rips, 2016; Spelke, Katz, Purcell, Ehrlich, & 

Breinlinger, 1994). 

 Another example of the discrepancy between explicit and implicit performance in intuitive 

physics comes from the water-pouring problem (WPP; Schwartz & Black, 1999). This is a 

modification to the WLT that includes two containers—one wider than the other—filled to the 

same height with water (see Figure 1B). Participants solving the WPP must determine which 
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container needs to be tilted farther before the water inside begins to pour out. Surprisingly, only 

34% of the participants in the study (averaged across container-type) correctly reported that a 

thinner container would need to be tilted farther than a wider one. However, when instructed to 

complete the task by closing their eyes and imagining the same situation, nearly all (95% of) 

participants rotated a thinner container filled with imaginary liquid farther. These findings 

demonstrate that people can reason successfully about the physical behavior of substances by 

mentally simulating an imaginary event, even if their corresponding explicit knowledge is 

inaccurate. They also show that people are more likely to utilize mental simulation when those 

systems are encountered in a realistic (dynamic) context instead of an ambiguous (static) one.  

 Taken together, the studies above demonstrate that people are capable of reasoning about 

the physical status of observed situations—including those involving non-solid substances—but 

fail to do so when task presentation is poor. In these cases, people appear to construct domain-

specific physical theories (Cook & Breedin, 1994) that are inconsistent with their implicit 

expectations in the real world. Importantly, these erroneous theories can be diminished or even 

overcome when the problems are made less ambiguous (Kaiser, Jonides, & Alexander, 1986; 

Kaiser, Proffitt, Whelan, & Hecht, 1992).  

A question that naturally arises is how problems can be framed to facilitate mental 

simulation and probabilistic inference in novel physical domains. The present study aims to 

address this question by focusing on judgments and predictions about physical events at critical 

moments, such as when a container will begin to spill, or where a moving substance will come to 

rest. Recent neural evidence suggests that people utilize an internal “physics engine” encoded 

within the brain’s multiple-demand system to reason about physical situations via mental 

simulation (Fischer, Mikhael, Tenenbaum, & Kanwisher, 2016). These events are represented to 
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encode both observable properties (e.g., position and volume) and hidden attributes (e.g., viscosity 

and friction) to enable physical inference (Hegarty, 2004). Hence, the role of dynamic context is 

particularly important because it provides visual motion cues from which substance attributes can 

be inferred (Kawabe, Maruya, Fleming, & Nishida, 2015). These attributes have been shown to 

influence people’s predictions about the dynamics of substances. For example, participants solving 

the WPP rotated imaginary containers filled with molasses—a liquid with a relatively high 

viscosity attribute—farther than ones filled with water (Schwartz & Black, 1999). It is therefore 

essential to provide observers with rich visual information about substance behavior to facilitate 

attribute inference and subsequent mental simulation, particularly when the substance is 

unfamiliar.  

 The present paper takes the general approach of providing adequate information for people 

to estimate observable and hidden properties of substances in physical scenes and then examines 

whether these estimates enable predictions about future event states via mental simulation. In the 

next sections, we outline the goals and contributions of the study, suggest how implicit physical 

reasoning can be framed at the computational level, and propose a unified framework for 

performing this computation. 

1.2. Goals and Contributions of the Study 

The present study aims to determine whether an approximated simulation model coupled 

with noisy input variables can account for human predictions and judgments in a range of novel 

situations involving non-solid substance dynamics. In Experiment 1, participants were provided 

visual input that enabled the perception of physical variables (e.g., viscosity), and then were asked 

to perform a task by reasoning about the relative pouring angle of two containers filled with liquids 

differing in their volume and viscosity. In Experiment 2, participants reasoned about the dynamics 
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of sand (a granular material less ubiquitous in daily life than viscous liquids), and in Experiment 

3, participants reasoned about the dynamics of liquid, sand, and rigid balls in a prediction task 

adapted from Bates et al.’s (2015) liquid experiments. 

Our empirical paradigms extended Schwartz and Black’s (1999) water-pouring problem 

and Bates et al.’s (2015) basin prediction problem, and incorporated critical features identified 

from previous physical reasoning literature (e.g., Kaiser, Proffitt & Anderson, 1985; Schwartz & 

Black, 1996; Smith, Battaglia & Vul, 2018). Our experiments provided observers with animated 

demonstrations of flow behavior that could guide inferences about unobservable attributes and 

probed the involvement of mental simulation processes in subsequent reasoning tasks. The 

experiments used dynamic and realistic displays to study reasoning mechanisms underpinning 

intuitive physics in a wide variety of scenarios involving a representative set of substance types 

(liquid, sand, and rigid objects).  The experiments reported here included two critical features in 

their design and procedure: (1) Situations are presented in a dynamic context (at least once) to 

guide inferences about latent attributes and observable volumes/positions of physical entities. For 

example, videos demonstrating the movement of each substance are shown prior to each prediction 

and judgment task. (2) The task in each problem does not involve a description or explanation of 

the situation across time. For example, rather than asking participants to trace out the motion 

trajectory of a moving object, participants are asked to catch the object or predict where the object 

will land at a particular time point. These design characteristics provide general guidance to prompt 

the use of mental simulation for physical predictions and judgments. 

The computational work presented in the paper provides a unified simulation method that 

is applied to situations involving the three substances (liquid, sand, and rigid objects), rather than 

developing separate simulation methods for each substance type. Under this approach, physical 
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models describing the behavior of each substance are formed from different parameterizations of 

the simulation. This would be analogous to humans utilizing a unified physics engine to handle 

arbitrary substances, where various physical transition models are formed depending on situational 

(perceptual) cues. Thus, the current modeling implementation is the first to examine predictions 

about multiple substances, ranging from liquids to rigid objects, while ensuring comparable 

comparisons of model predictions with human judgments. Although we do not suggest that the 

current simulation method is the only viable account of human mental simulation at the process 

level, its adaptability to different substance types indicates that separate simulation frameworks 

are not necessarily required to account for human judgments involving the dynamics of non-solid 

substances as well as rigid objects. As the mental simulation is a central component in physical 

reasoning, it is important to investigate human proficiency across diverse situations involving 

different substances, some more familiar than others. Although previous work has involved both 

rigid objects and non-solid substances (Bates, Yildirim, Tenenbaum, & Battaglia, 2015; Battaglia, 

Hamrick, & Tenenbaum, 2013; Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2015; Sanborn, 

2014; Sanborn, Mansinghka, & Griffiths, 2013; Smith, Battaglia, & Vul, 2013), the current 

experiments extend findings to a wider variety of scenarios involving a representative set of 

substance types (liquid, sand, and rigid objects). Moreover, we explicitly examine people’s 

predictions about the dynamics of granular substances (sand; see Experiments 2 and 3). This 

substance type is particularly interesting because it serves as a “middle ground” of sorts between 

liquid and rigid objects. The current study is—to our knowledge—the first to utilize a 

computational model based on physics-based simulation to explain human predictions about the 

dynamics of granular substances. 



Reasoning About the Dynamics of Substances  Kubricht et al. 

12 
 

Finally, we address the plausibility of approximations to mental simulations for physical 

events. Physics-based simulations for non-rigid substances are computationally intensive because 

the partial differential equations which describe fluid and granular substance’s behavior have no 

analytic solution and therefore must be integrated numerically. While modern physics-based 

simulators can perform this integration, it requires an immense amount of computation and time. 

In contrast, people appear to have little difficulty making predictions about each type of substances 

in different physical situations. For example, regardless of whether a container full of marbles or 

liquid spills onto a table, an average person will quickly (and implicitly) form a prediction about 

where the material will be in the future. How could humans achieve such reasoning mastery despite 

the large range of variations in physical complexity? In the current study, we explore the possibility 

that people represent non-solid substances as discrete collections of rigid balls (on the order of ten 

to thirty) and generate predictions by applying emulated principles of rigid-body mechanics to 

spatially represented variables. We term this significantly simplified physical model the ball 

approximation (BA) model and test its performance in comparison with human judgments. This 

modeling endeavor addresses the important question of whether complex laws of physical 

dynamics are necessary to account for people’s predictions about substance behavior in novel 

situations, or whether the dynamics of liquids can be emulated using a low-resolution, particle-

based representation. While particle-based approaches have shown success in previous work (see 

Bates et al., 2015), the current study extends the approach to a novel problem domain involving 

liquids varying in their viscosity and different substances. This extension is necessary because it 

clarifies the viability of rough physical approximations and helps to answer questions regarding 

their role in reasoning through mental simulation. 
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2. Intuitive Substance Engine: Background and Overview 

A growing body of evidence suggests that intuitive physics is based on Bayesian inference over 

structured knowledge of physical principles and noisy perceptual inputs (Battaglia, Hamrick, & 

Tenenbaum, 2013; Hamrick, Battaglia, Griffiths, & Tenenbaum, 2016; Sanborn, 2014; Sanborn, 

Mansinghka, & Griffiths, 2013). The problem of inferring physical properties (h) can be modeled 

as assessing the posterior probability of a candidate hypothesis (ℎ = 𝐻𝐻) based on observable 

information 𝑂𝑂, and can be computed using Bayes’ rule: 

 

 𝑃𝑃(ℎ = 𝐻𝐻|𝑂𝑂) =  
𝑃𝑃(𝑂𝑂|ℎ = 𝐻𝐻)𝑃𝑃(ℎ = 𝐻𝐻)

∑ 𝑃𝑃(𝑂𝑂|ℎ = 𝐻𝐻′)𝑃𝑃(ℎ = 𝐻𝐻′)𝐻𝐻′
  . (1) 

To enable the inference in Equation (1), a computational model needs to define the likelihood term 

𝑃𝑃(𝑂𝑂|ℎ) for evaluating the probability of observing the input data given certain physical properties, 

and the prior term 𝑃𝑃(ℎ) based on general knowledge of how physical properties are distributed in 

the physical world.  

2.1 The Noisy Newton Framework 

The noisy Newton framework for physical reasoning assumes that inferences about complex, 

dynamical systems can be generated by combining noisy perceptual inputs with the principles of 

classical (i.e., Newtonian) mechanics 𝑃𝑃(𝑂𝑂|ℎ), given prior beliefs about physical and perceptual 

variables 𝑃𝑃(ℎ)  (Bates, Yildirim, Tenenbaum, & Battaglia, 2015; Battaglia, Hamrick, & 

Tenenbaum, 2013; Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2015; Sanborn, 2014; 

Sanborn, Mansinghka, & Griffiths, 2013; Smith, Battaglia, & Vul, 2013). Under this framework, 

the locations, motions and physical attributes of objects and substances are sampled from 

distributions with physical and perceptual noise and propagated forwards in time using physics-

based simulation models that approximate Newtonian mechanics. The status of the situation 
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throughout the simulation is then queried, and the outputs of the query are averaged across 

numerous simulations to determine the probability of the associated human judgment. The model 

has successfully explained a variety of human judgments across diverse physical situations, such 

as object collisions (Sanborn, 2014; Sanborn, Mansinghka, & Griffiths, 2013), block towers 

(Battaglia, Hamrick, & Tenenbaum, 2013; Hamrick, Battaglia, Griffiths, & Tenenbaum, 2016), 

containment situations (Liang, Zhao, Zhu, & Zhu, 2015), and projectile motion (Smith, Battaglia, 

& Vul, 2013). 

 For simple physical events such as head-on object collisions, the likelihood term in 

Equation (1) can be calculated from four observable variables—the velocity of each object before 

and after impact—to form inferences based on candidate hypotheses 𝑃𝑃(ℎ). For each candidate 

hypothesis (e.g., prior beliefs about the attributes of each object), values for the corresponding 

observable variables can be determined analytically via the principle of conservation of 

momentum. Then, a likelihood value is obtained for each hypothesis, ℎ = 𝐻𝐻 , by comparing 

expected observations with ground-truth evidence from the real world using a noisy perception 

model. Thus, the noisy Newton model for object collisions predicts human judgments by 

answering three questions: (1) What are people’s expectations about the physical characteristics 

of a dynamic scene; (2) What would the scene look like given those characteristics; and (3) How 

likely are the observable data given those expectations?  

 The noisy Newton model has also achieved success in situations involving towers of 

stacked (rectangular) blocks (Battaglia, Hamrick, & Tenenbaum, 2013; Hamrick, Battaglia, 

Griffiths, & Tenenbaum, 2016). It has been used to predict human judgments about whether a 

block tower will fall down and in which direction (Battaglia, Hamrick, & Tenenbaum, 2013), as 

well as whether blocks of one color are heavier/lighter than blocks of another color (Hamrick, 
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Battaglia, Griffiths, & Tenenbaum, 2016). Unlike Sanborn et al.’s (2013) model for object 

collisions, the block tower model does not assess the likelihood of candidate hypotheses by 

comparing the expected velocity of each rigid body (i.e., each block) to observed data. After all, it 

is unlikely that people attend to every object’s motion in a scene when perceiving and reasoning 

about their characteristics and future states. Instead, hypothesized scene states are queried 

throughout time to determine whether or how an event occurred, which is compared with the 

ground-truth outcome to assess likelihood. The key supposition here is that people possess a 

runnable mental model of rigid-body dynamics to simulate (noisily) perceived situations forwards 

in time.  

Recent research has shown that the noisy Newton framework can be extended to explain 

people’s predictions about the dynamics of liquid (Bates, Yildirim, Tenenbaum, & Battaglia, 

2015). In their task, participants reasoned about which of two basins the majority of liquid would 

fall into after pouring past randomly generated ‘obstacle courses.’ To explain human performance, 

Bates et al. (2015) proposed an intuitive fluid engine (IFE), where future liquid states are 

approximated by probabilistic simulation via a Smoothed Particle Hydrodynamics method (SPH; 

Monaghan, 1992). The SPH method serves as an approximation to ground-truth physics, which is 

a key extension for applying the noisy Newton framework to liquid dynamics. The method 

approximates a volume of liquid as a set of particles with perceptual uncertainty drawn from a 2D 

Gaussian distribution. The attributes of each particle are updated by comparing them with the 

attributes of nearby ‘neighbors’ (closer neighbors have a larger impact). The new attributes are 

then used to update each particle’s position and velocity at each iteration, and the process is 

repeated at each timestamp for every particle. Overall, Bates et al.’s (2015) model matched human 
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judgments about future liquid states and provided a better quantitative fit than alternative models 

that did not employ physical simulation or uncertainty about physical variables. 

Bates et al.’s (2015) results point to an extraordinary conclusion: People are able to 

mentally simulate substance-related events with ease and proficiency, even though the physical 

equations governing the fluid motion (1) lack analytic solutions, (2) are particularly difficult to 

numerically integrate, and (3) require coarse approximation methods, such as SPH, to achieve 

correspondence with the real world. Furthermore, the researchers found that the learning-based 

model (i.e., a heuristic and deep learning account) failed to achieve comparable performance with 

simulation-based models for fluid dynamics. The current experiments follow a similar design, 

where ground-truth and probabilistic simulation results are compared with learning-based (data-

driven) model performance. However, it remains unclear whether the success of Bates et al.’s 

(2015) model can extend to novel situations involving different types of human judgments and 

predictions. Moreover, the human capacity for reasoning about less common substances (e.g., 

granular materials, like sand) remains to be explored and modeled via a probabilistic simulation 

approach. Motivated by Bates et al.’s (2015) success, the current work aims to address these 

questions using a range of physical reasoning tasks, as well as a physics engine based on state-of-

the-art simulation methods in computer graphics. 

2.2. Intuitive Substance Engine (ISE) 

The present study developed the same general class of model as Bates et al.’s (2015) IFE, which 

we term the intuitive substance engine (ISE). The ISE models physical predictions and judgments 

by simulating substance states forwards in time and querying perceptual/physical variables at 

critical time steps. Substance states are represented by the perceptual and physical variables that 

define their physical behavior, such as the position of each substance element and the physical 
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attributes (e.g., viscosity, density, pressure, etc.) which govern how those positions change over 

time. The state of a substance at time step 𝑡𝑡 is denoted by 𝑆𝑆𝑡𝑡, where 𝑡𝑡 = 0, 1, … ,𝑇𝑇. Given an initial 

ground-truth substance state, 𝑆𝑆0̅ (i.e., the true values for each perceptual and physical variable prior 

to movement), the ISE first forms the distribution of an observed initial state 𝑆𝑆0 , 𝑃𝑃(𝑆𝑆0|𝑆𝑆0̅) , 

reflecting noisy perception and prior beliefs about underlying variables. 

 The goal of the ISE model is to form expectations about human predictions and judgments 

in various intuitive physics tasks. To do this, the model must infer a final state distribution given 

observed states, 𝑃𝑃(𝑆𝑆𝑇𝑇|𝑆𝑆0,𝑆𝑆0̅). This is achieved by sampling from the observed state distribution 

𝑖𝑖 = 1, … ,𝑁𝑁 times and propagating each sampled observed state, 𝑆𝑆0
(𝑖𝑖), forwards in time using the 

Material Point Method (MPM) simulation method, 𝑀𝑀: 𝑆𝑆𝑡𝑡 → 𝑆𝑆𝑡𝑡+1. We denote the state distribution 

of the entire sequence from 𝑡𝑡 = 0 to 𝑡𝑡 = 𝑇𝑇 as 𝑃𝑃(𝑆𝑆0:𝑇𝑇|𝑆𝑆0:𝑇𝑇−1,𝑆𝑆0̅). This distribution is then queried 

to form predicted response distributions, given different initial (ground-truth) substance states, 𝑆𝑆0̅. 

A graphical depiction of the ISE modules is shown in Figure 2, further information about the 

query functions used in each experiment are provided in Appendix A, and additional technical 

details on MPM is provided in Appendix B. 
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Figure 2. The three core modules of the ISE model are shown. (1) Input variables are separated 
into perceptual (observable) and physical (hidden) variables. Prior distributions are placed on the 
listed variables; other perceptual and physical variables are also passed to the simulator (e.g., flow 
velocity, density, etc.) but only their ground-truth values were used. (2) Substance states follow 
noisy distributions due to uncertain prior expectations about underlying variables. The ISE model 
uses the sampling approach with MPM simulation to derive the substance state distribution at each 
time step: 𝑃𝑃(𝑆𝑆0:𝑇𝑇). (3) This distribution is queried based on the question asked to participants in 
each experiment, and queries are aggregated across 𝑛𝑛 = 1, … ,𝑁𝑁  samples to form predicted 
response distributions.  
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Although both our ISE model and Bates et al.’s (2015) IFE model are formed under the 

same computational framework, each employs different simulation methods as the physical 

simulation engine. The simulation of incompressible flows through numerical evaluation of 

physical equations has become one of the most significant topics in computer graphics and 

mechanical engineering. The velocity field of simulated fluids is determined according to the 

constraints specified in the Navier-Stokes equations. These partial differential equations place 

constraints on key physical properties (i.e., momentum and compressibility) which are quantified 

by underlying variables, such as localized substance velocity, density, pressure, and viscosity (see 

details Appendix B). To numerically solve these equations, our ISE model adopts the Material 

Point Method (MPM; Zhu & Bridson, 2005; Jiang C. , Schroeder, Selle, Teran, & Stomakhin, 

2015), which has become the standard in physics-based simulation calculations due to its accuracy, 

stability, and efficiency. In recent work, a detailed evaluation of physical simulation methods in 

terms of perceived realism showed that the MPM method yielded highest realism scores compared 

with other methods for simulating fluid behavior (Um, Hu, & Thuerey, 2017). However, we do 

not make the claim that people use a particle/grid representation (as developed in MPM simulation 

method for physical simulation). Instead, the MPM method is utilized for two primary reasons. 

First, it provides more realistic visualizations of demonstration events, which facilitate human 

inferences about latent substance attributes. Second, the MPM method can be applied to each of 

the substances investigated in the current work, allowing for a unified modeling framework 

applicable to any substance type. 

2.3. Uncertainty in Perceptual and Physical Variables 

Fluid simulation with physical dynamics provides deterministic fluid movements if the ground-

truth values of substance attributes, position, and volume are known. Hence, the decisions directly 
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derived from the MPM simulator are binary judgments, which implies that physical simulation 

with high precision cannot explain humans’ probabilistic judgments in intuitive physics tasks. As 

demonstrated in the work by Bates et al. (2015) and the noisy Newton model (e.g., Sanborn et al., 

2013), uncertainty in perceptual and physical variables plays an important role in accounting for 

people’s physical judgments. In our ISE model, we combine the MPM simulator with noisy input 

variables (i.e., position, volume, viscosity, friction angle, and restitution), thereby accounting for 

physical uncertainty and the influence of perceptual and physical variables on the prediction and 

judgment tasks. The distributions used to generate noise—along with their parameters—are 

provided in the ISE Model Details section in each experiment. 

2.4. Simulation-Based Approximation Model  

To examine the possibility that intuitive physics can be achieved through low-resolution spatial 

representations and physical simulations, we further developed a model to coarsely approximate 

ground-truth physics and the behavior of non-solid substances. This approximation hypothesis is 

motivated by Bates et al.’s (2015) results, where researchers used a small number of particles (as 

few as 15) in their SPH simulation method to achieve high correlations with human predictions in 

estimating water movement patterns. To examine whether this approximation strategy may work 

across a range of substances, we constructed a simulation-based model which approximates 

substances as a set of rigid balls which interact with one another according to the principle of 

conservation of momentum: i.e., the same principle governing the dynamics of colliding balls. In 

the ball approximation (BA) model, latent attributes of liquid, such as viscosity, were 

approximated by damping the angular acceleration of each ball with a magnitude proportional to 

its angular velocity and weighted by a stiffness parameter. Our implementation of angular damping 

is akin to creating an imaginary lever attached to each ball, where the lever connects via a “ball-
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and-socket” joint. The levers—and therefore each of the balls—are acted upon with a resistive 

force which is proportional to how fast each lever is rotating. Thus, a ball that rotates quickly with 

respect to the bottom of the container will experience a stronger resistive force than a ball with 

comparatively slower rotation. This approximation roughly emulates the dynamical impact of 

viscosity, which represents the internal friction in non-solid substances that prevents local 

deformation.  

 The approximation model can significantly reduce computation cost compared with the 

ISE model utilizing high-resolution, physics-based simulation. In the ISE model, each small 

particle represents a chunk of continuum material. A typical simulation employs at least 10k 

particles, with each particle containing (1) degree of freedoms of position, velocity, rotation, 

shearing, dilation; and (2) material parameters governing its dynamics: density, Young's modulus, 

bulk modulus, and internal friction. However, in the ball-approximation (BA) model, the material 

is approximated with around 30 rigid spheres in contrasts to tens thousands of particles in ISE 

model. The ratios for computational complexity, degree-of-freedom count, and the dimension of 

the dynamics space are thus approximately more than 1000/3 between the ISE and BA models. 

 

3. Experiment 1: Reasoning about the relative pouring angle of liquid-filled containers 

Experiment 1 aims to demonstrate that people can utilize mental simulation to form judgments 

about the dynamics of liquids which vary in their viscosity attribute. The experimental task is 

designed to conform with the three features outlined in Section 1.2 to facilitate spatial 

representation and subsequent mental simulation. To quantify the extent that people employ 

inferred attributes of non-solid substances when reasoning about novel situations, we utilized a 

recent development in graphical substance simulation (Bridson, 2015; Jiang C. , Schroeder, Selle, 
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Teran, & Stomakhin, 2015) to capture the dynamic behavior of non-solid materials in vivid 

animations. Previous work has shown that realistic animations can facilitate representation of 

dynamic physical situations (Tversky, Morrison, & Betrancourt, 2002). Furthermore, recent 

research on human visual recognition indicates that latent attributes of liquids (e.g., viscosity) are 

primarily perceived from visual motion cues (Kawabe, Maruya, Fleming, & Nishida, 2015). 

Therefore, displaying realistic substance behavior is important to perceive the key physical 

attributes that facilitate mental simulation.  

3.1. Participants 

A total of 152 participants (99 females; mean age = 20.7 years) were recruited from the Department 

of Psychology subject pool at the University of California, Los Angeles, and were compensated 

with course credit.  

3.2. Materials and Procedure 

Prior to the reasoning task, participants viewed animated demonstrations of the movement of a 

moderately viscous liquid in two situations. The liquid used in the demonstrations was colored 

orange and was not observed in the judgment task. In the first (flow) demonstration, the orange 

liquid pours over two torus-shaped obstructions in a video looped three times and lasting for 11.5 

seconds. The flow demonstration videos were presented to provide visual motion cues to inform 

participants’ inferred viscosity values1. Following the flow demonstration, participants viewed a 

video of a cylindrical container filled with the same orange liquid tilting at a constant angular rate 

(𝜔𝜔 = 22 ° ∙ sec−1) from the upright orientation of the container and moving towards the horizontal. 

The tilting demonstration video was looped three times for a duration of 14.7 seconds2. 

                                                
1 The flow demonstration video can be viewed at https://vimeo.com/339876565/2cdf12885b 
2 The tilting demonstration video can be viewed at https://vimeo.com/339876553/600e5180cc 

https://vimeo.com/339876553/600e5180cc
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Figure 3. Illustration of flow demonstration video and judgment trial. (Top) Sample frames from 
the high viscosity fluid (Hvisc, red) and low viscosity fluid (Lvisc, green) demonstration videos. 
(Bottom) Tilt judgment trial, where the proportion of each container filled with the Hvisc and Lvisc 
liquid is 40% and 60%, respectively. Participants were asked to report which container would need 
to be tilted with a larger angle before the liquid inside begins to pour out. 

 Following the demonstration videos, two new liquids were introduced, one with low 

viscosity (Lvisc; similar to water) and one with high viscosity (Hvisc; similar to a thin syrup). The 

Lvisc and Hvisc liquids were colored either red or green, and the color was counter-balanced across 

participants. As shown in the top panel of Figure 3, participants viewed a flow demonstration 

video of both the Hvisc and Lvisc liquids (looped three times) for a duration of 11.5 seconds before 

each judgment trial. The two flow videos were presented side by side for comparison, and the 

relative position of each liquid was counterbalanced across participants. The Lvisc and Hvisc 

liquids were selected to readily distinguish each one based on their perceived viscosities, which 

were inferred from visual motion cues in the flow demonstration videos (see Kawabe, Maruya, 

Fleming, & Nishida, 2015)3. 

                                                
3 The stimulus videos can be viewed at https://vimeo.com/339876567/59c9266c7d 

https://vimeo.com/339876567/59c9266c7d
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 In the subsequent reasoning task, participants viewed a static image of two containers side 

by side filled with the Lvisc and Hvisc liquids (see bottom panel of Figure 3). Participants were 

instructed to assume that each container was tilted simultaneously in the same way as observed 

earlier for the orange liquid in the tilting demonstration. They were informed that both containers 

were tilted at the same rate and were provided with the quantity of liquid in each container. 

Participants were then asked to report which container would need to be tilted with a larger angle 

before the liquid inside begins to pour out and received no feedback following the completion of 

each trial. The container images remained on the screen until a response was made; there was no 

time limit for making a response on each trial. The experiment manipulated the volume of the 

Lvisc and Hvisc liquids (𝑉𝑉𝐿𝐿  and 𝑉𝑉𝐻𝐻, respectively) in each container across the values 20%, 40%, 

60%, and 80%, representing the proportion of the container filled. Hence, the experiment consisted 

of 16 trials presented in a randomized order, including all possible volume pairs between the Lvisc 

and Hvisc liquids. The experiment lasted approximately 10 minutes. 

3.3. Human Results 

The proportion of participants choosing the Hvisc liquid container as pouring last with a larger 

titled angle for each judgment trial is shown in the top-left panel of Figure 4. To assess the 

relationship between Hvisc liquid volume and human judgments, a repeated-measures ANOVA 

was conducted across two within-subjects factors: i.e., Lvisc and Hvisc liquid volume with four 

levels each. The two-way interaction between Lvisc and Hvisc liquid volume was significant, 𝐹𝐹(9, 

143) = 45.12, 𝑝𝑝 < .001, 𝜂𝜂𝑝𝑝2  = 0.74, indicating that the effect of Hvisc liquid volume on Hvisc 

response proportion varied according to the quantity of Lvisc liquid in the alternative container. 

Since the two liquid volume variables interacted, data were separated into each Lvisc liquid volume 

condition and, the main effect of Hvisc liquid volume was examined. Results indicate that Hvisc 
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liquid volume was least influential on participants’ judgments when the Lvisc container was 80% 

filled, 𝐹𝐹(3, 149) = 2.36, 𝑝𝑝 = .07, 𝜂𝜂𝑝𝑝2  = 0.05. However, for smaller Lvisc volumes, Hvisc liquid 

volume had a significant impact on the pouring judgment. For example, Hvisc liquid volume 

showed a significant main effect when the Lvisc container was filled to a lesser extent: 𝐹𝐹(3, 149) 

= 70.77, 𝑝𝑝 <  .001, 𝜂𝜂𝑝𝑝2  =  0.59 for 𝑉𝑉𝐿𝐿  = 60%; 𝐹𝐹(3, 149) = 143.12, p < .001, 𝜂𝜂𝑝𝑝2 = 0.74 for 𝑉𝑉𝐿𝐿  = 

40%; 𝐹𝐹(3, 149) = 107.22, 𝑝𝑝 <  .001, 𝜂𝜂𝑝𝑝2  = 0.68 for 𝑉𝑉𝐿𝐿  = 20%. In other words, when the Lvisc 

liquid container had the greatest volume, participants consistently reported that the Hvisc container 

would pour last regardless of how much Hvisc liquid was in the other container. However, 

participants were increasingly hesitant to report that the Hvisc liquid container would pour last 

when the Lvisc liquid container was filled to lesser volumes. These results indicate that participants 

attended to both liquid volume and viscosity when forming their relative pour angle judgments.  

3.4. Can Heuristic-Based Reasoning Account for Human Performance? 

Next, we examined whether people rely on heuristic-based reasoning to make their judgments. 

One candidate heuristic is that given two containers filled with different volumes of each liquid, 

the container with lesser liquid volume requires a greater rotation before beginning to pour. While 

participants adhered to this rule for trials where the volume of Hvisc liquid (𝑉𝑉𝐻𝐻) was less than 

Lvisc liquid volume (𝑉𝑉𝐿𝐿) (i.e., 𝑉𝑉𝐻𝐻 < 𝑉𝑉𝐿𝐿), their judgments for each of the 𝑉𝑉𝐿𝐿 < 𝑉𝑉𝐻𝐻  trials did not 

accord to the same heuristic. For example, in trials where volume difference was least salient (i.e., 

𝑉𝑉𝐻𝐻 = 40%, 60%, and 80%  and  𝑉𝑉𝐿𝐿 = 20%, 40%, and 60% , respectively), the lesser-volume 

heuristic predicts Lvisc liquid responses. However, Hvisc response proportions for those trials were 

significantly greater than zero, 𝑡𝑡(151)  = 9.92, 8.86, 8.10, p < .001, Cohen’s 𝑑𝑑 =

 .80, .72, .66, respectively.  A second potential heuristic is to always choose the Hvisc liquid as 

requiring a greater rotation based on general knowledge that Hvisc liquid moves slower than Lvisc 



Reasoning About the Dynamics of Substances  Kubricht et al. 

26 
 

liquid. The above three cases also disagreed with this heuristic since Hvisc response proportions 

were significantly less than one, 𝑡𝑡(151) = 15.22, 17.04, 18.65, p < .001, Cohen’s 𝑑𝑑 = 1.23, 1.38, 

1.51, respectively. In summary, response proportions in the specified trials reveal that participants 

attended to latent liquid attributes (e.g., viscosity) and volume difference when making their tilt 

angle judgments. 

It is worth noting that one possibility is that participants reasoned by applying multiple 

heuristics via a combination rule. For instance, the Hvisc container is chosen if both liquid volumes 

are equal, and the container with the least liquid volume is chosen otherwise.  Although this 

combined heuristic could provide a qualitative account to the trends of human responses, it fails 

to predict the quantitative performance across the conditions. Furthermore, results from a follow-

up study utilizing realistic depictions of water and honey provides results again this heuristic 

combination hypothesis. Specifically, participants consistently responded that the Hvisc liquid 

(honey) would pour last, even in trials where the Lvisc liquid (water) volume was less than that of 

the Hvisc liquid (honey). These results suggest that participants were unlikely to utilize heuristic-

based reasoning in the 10-minute experiment without any explicit feedback, although it is possible 

that participants might develop and apply such rules as their familiarity with the liquid-pouring 

environment increases through experience. 

3.5. Simulation-Based ISE and BA Model Details 

As described in Section 2.2 (see Appendix A and B for additional technical details), we adopt an 

MPM-based simulation method for our ISE model. The physics-based MPM simulator was used 

to determine the ground-truth about which container would need to be tilted with a larger angle 

before the liquid inside begins to pour out. 
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The input variables for the ISE in Experiment 1 were liquid volume with perceptual 

uncertainty and liquid viscosity with physical uncertainty. Given the ground-truth value of volume 

( 𝑉𝑉𝐿𝐿
(𝐺𝐺𝐺𝐺),𝑉𝑉𝐻𝐻

(𝐺𝐺𝐺𝐺) ), and viscosity for each liquid ( 𝜇𝜇𝐿𝐿
(𝐺𝐺𝐺𝐺),𝜇𝜇𝐻𝐻

(𝐺𝐺𝐺𝐺) ), 𝑁𝑁  = 10,000 noisy samples 

({(𝑉𝑉𝐿𝐿
(𝑖𝑖),𝑉𝑉𝐻𝐻

(𝑖𝑖),𝜇𝜇𝐿𝐿
(𝑖𝑖), 𝜇𝜇𝐻𝐻

(𝑖𝑖)), 𝑖𝑖 = 1, … , N} ) were generated and passed to the MPM simulator. The 

simulator propagated each sampled situation forwards in time and determined when each 

container’s contents began to spill over the rim of the cylinder. The container which required a 

longer duration to spill was chosen as the predicted response for each sample. By aggregating 

predictions across the 10,000 samples, the ISE outputs a predicted response distribution for each 

trial. 

 To model perceptual and physical uncertainty in participants’ mental simulations, the ISE 

sampled liquid volumes and viscosities from noisy distributions reflecting imperfect volume 

estimation and viscosity inference via the visual system. Gaussian noise (0 mean, 𝜎𝜎𝑉𝑉2 variance) 

was added to the ground-truth Lvisc and Hvisc volume, 𝑉𝑉𝐿𝐿
(𝐺𝐺𝐺𝐺) and 𝑉𝑉𝐻𝐻

(𝐺𝐺𝐺𝐺). Gaussian noise (0 mean, 

𝜎𝜎𝜇𝜇2 variance) was also added to a scaled viscosity value for each liquid, 𝑐𝑐𝐿𝐿 ∙ 𝜇𝜇𝐿𝐿
(𝐺𝐺𝑇𝑇) and 𝑐𝑐𝐻𝐻 ∙ 𝜇𝜇𝐻𝐻

(𝐺𝐺𝐺𝐺). 

The scale variable 𝑐𝑐  was a free parameter in the ISE model and was included to account for 

participants’ biased estimates of viscosity for each liquid. For example, if people have a prior belief 

that liquids should behave like water, then their inferred viscosity estimates would be negatively 

biased: i.e., 𝑐𝑐 < 1. Viscosity uncertainty was added to these scaled viscosity values in logarithmic 

space (see Sanborn, Mansinghka, & Griffiths, 2013):  𝜇𝜇𝑖𝑖 = log−1(log�𝑐𝑐 ∙ 𝜇𝜇(𝐺𝐺𝐺𝐺)� + 𝜀𝜀) , where 

𝑐𝑐 ∙ 𝜇𝜇(𝐺𝐺𝐺𝐺)  is the scaled viscosity value and 𝜀𝜀  represents Gaussian noise with 0 mean and 𝜎𝜎𝜇𝜇2 

variance. Logarithmic noise corresponds with increasing uncertainty for larger variable values. 

The results reported herein used the following model parameters: 𝑐𝑐𝐿𝐿 = 2.5, 𝑐𝑐𝐻𝐻 = 1.1, 𝜎𝜎𝑉𝑉 =  0.15, 

and 𝜎𝜎𝜇𝜇 =  0.15. Note that the current reported parameter 𝑐𝑐𝐿𝐿 = 2.5 seems to be large, but it in fact 
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is very small with respect to the common viscosity values; for instance (with unit mPa·s), water 

(1.0016), milk (2.12), oil (56.2), honey (2000-10000), ketchup (5000-20000). 

We also ran simulations with the ball-approximation (BA) model to examine whether an 

approximation model with a low-resolution of spatial representations and physical simulations can 

account for human judgments. The BA simulations used the noisy viscosity as in the ISE model, 

i.e., noisy stiffness was generated by offsetting a mean value parameter with Gaussian noise on a 

logarithmic scale. The material is approximated using 30 rigid spheres. The results reported herein 

used the following model parameters: 𝑐𝑐𝐿𝐿 = 2.1, 𝑐𝑐𝐻𝐻 = 1.6, 𝜎𝜎𝑉𝑉 =  0.1, and 𝜎𝜎𝜇𝜇 =  0.17. 

 

3.6. Non-Simulation Model Details 

To examine whether substance simulation is necessary to account for how humans reason about 

liquid dynamics, we compare the ISE model with two statistical learning methods: the generalized 

linear model (GLM; McCullagh, 1984) and eXtreme Gradient Boosting (XGBoost; Chen & 

Guestrin, 2016). These models are purely data-driven, meaning that they learn from examples and 

do not encode any explicit knowledge of physical laws or physical simulation. The selected 

features for these models include: (1) the volume of liquid in each container; and (2) the viscosity 

value of the Lvisc and Hvisc liquids.  

 To predict the human judgment for the 𝑖𝑖*th trial, denoted as  𝐽𝐽𝑖𝑖∗ , both non-simulation 

models were trained with 15 trials {𝐽𝐽𝑖𝑖 , 𝑖𝑖 = 1, 2, …, 16, 𝑖𝑖 ≠ 𝑖𝑖∗} and tested with the 𝑖𝑖∗th trial. 

Specifically, each training trail was augmented with noisy input and generated 10,000 samples. 

Since GLM is capable of making a prediction in continuous variable space, the trained GLM model 

is directly applied to the test trial to predict how likely a container will need to be tilted to a larger 

angle before the liquid inside begins to pour out. Since the XGBoost provides a (direct) 
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discriminative classification (i.e., +1 indicating selection of the left container and -1 indicating 

selection of the right container), we introduced noise (the same method for the ISE) to the input 

variables (volume and viscosity features) for each test trial. For each test trial, a set with 10,000 

samples was generated. The trained XGBoost model is applied to classify the labels (+1 or -1) in 

each sample, which are then aggregated to form the predicted response proportion for each test 

trial. 

3.7. Model Comparisons 

We first compared how well different computational models account for human performance for 

the 16 judgment trials. The top right panels of Figure 4 show the predictions from the ground-truth 

model, which yielded a low correlation with human judgments, 𝑟𝑟(14) = 0.066.  The low 

correlation is due to the ground-truth model generating binary decisions across conditions, due to 

the absence of any perceptual/physical noise. Therefore, the model failed to account for the gradual 

change of human performance as a function of liquid volume.  

The remaining panels in Figure 4 depict results from the ISE, BA, GLM, and XGBoost 

models with perceptual/physical noise. Although human judgments and model predictions were 

highly correlated as 𝑟𝑟(14) = 0.995 (𝐼𝐼𝐼𝐼𝐼𝐼), 0.97(𝐵𝐵𝐵𝐵), 0.95(𝐺𝐺𝐺𝐺𝐺𝐺), and 0.93(XGBoost), the ISE 

model showed the greatest correlation with human performance. Root-mean-squared deviation 

(RMSD) between human judgments and the models’ predictions were 0.0989, 0.0946, 0.13, and 

0.12, respectively, which showed the smaller deviation for simulation-based models (ISE and BA). 

In comparison to the data-driven models (i.e., the GLM and XGBoost models), the simulation-

based ISE and BA models utilize real and approximated material properties (viscosity/stiffness) 

and perceptual features (volume) as variables in a generative physical model. This computational 

approach provides a better account to human predictions in the current physical reasoning task. 
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Table 1 shows the summary of the model comparison results. In summary, the ISE model 

predictions were most correlated with human judgment. We examined model performance using 

the Bayesian information criterion (BIC) to account for the different number of free parameters in 

each model. We found that the BA model showed the best fitting result with the lowest BIC value. 

These results support the role of physical simulation as a potential mental model to account for 

human performance in intuitive physics tasks. Furthermore, the success of the BA model 

demonstrates that precise numerical simulation methods are not necessarily required to provide a 

good fit to human performance; instead, an approximation with reduced computation efforts is 

adequate to account for human performance through mental simulation. The worse performance 

from data-driven models (XGBoost and GLM) shows the inadequacy of the generic learning-from-

data approach, and highlights the importance of making inference according to the laws of physics 

or the approximated forms in reasoning tasks related to physical events. 

Table 1. Comparison between human performance and model predictions for the ground-truth, 
ISE, XGBoost, and GLM models in Experiment 1. The root-mean-squared-deviation (RMSD, 
lower value indicates better model fitting result) and correlation are shown, in addition to the 
number of free parameters in each model and the corresponding Bayesian information criterion 
(BIC) score (lower value indicates superior model fit). The bold text indicates the best model 
performance according to the different performance measures. 

 Ground-
Truth 
Model 

ISE BA XGBoost GLM 

# params 5 9 5 8 7 

Correlation 0.066 0.995 0.97 0.93 0.95 

RMSD 0.67 0.0989 0.0998 0.13 0.12 

BIC 1.05 -49.08 -59.88 -43.11 -48.44 
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Figure 4. Human response proportions and predictions from the five candidate models: (Top-
Right) Ground-Truth (GT) Model, (Middle-Left) Intuitive Substance Engine (ISE) Model, 
(Middle-Right) Ball Approximation (BA) model, (Bottom-Left) General Linear Model (GLM), 
and (Bottom-Right) eXtreme Gradient Boosting (XGBoost) Model. Columns 1 and 3 provide 
human judgments and model predictions; horizontal axes indicate Hvisc liquid volume, and 
vertical axes indicate the proportion of Hvisc liquid responses associated with a greater rotation 
angle. Columns 2 and 4 compare model predictions with human judgments; vertical lines indicate 
the CIs of human judgments, and horizontal lines indicate the CIs of model predictions. The ISE 
and BA simulation models outperform competing non-simulation data-driven models. 

 
4. Experiment 2: Reasoning about Granular Material 

Results from Experiment 1 indicate that people are sensitive to the viscosity attribute of liquids 

when reasoning about the dynamics of non-solid substances, and the simulation-based models 

provides the best account for human performance in a range of conditions. However, it remains 
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unclear whether this proficiency extends to substances that are less ubiquitous in daily life than 

liquid—specifically granular materials such as sand, and whether the simulation-based models still 

provides a good account for human performance. The second experiment was designed to 

determine whether humans can predict the resting geometry of a volume of sand after it is poured 

from a funnel onto a surface, and whether dynamic visualizations of the pouring behavior facilitate 

mental simulation of sand-surface interactions. 

4.1. Participants 

A total of 43 undergraduate students (31 females; mean age = 20.2 years) were recruited from the 

University of California, Los Angeles (UCLA), Department of Psychology subject pool and were 

compensated with course credit. 

4.2. Materials and Procedure 

Participants first viewed a simulated demonstration video of sand falling from a funnel suspended 

10 cm above a level surface to form the final resting pile. The pouring event was viewed three 

times from a zoomed-out perspective (Figure 5A) and then a zoomed-in perspective (Figure 5B) 

for a duration of 35 sec4.  

 After viewing the demonstration video, participants were shown a sand-filled funnel 

suspended 0.5, 1, 2, and 4 cm above the surface in a randomized order. After viewing each situation 

in both a zoomed-out (Figure 5A) and zoomed-in view (Figure 5B), participants were asked to 

indicate which of four sand piles would result from the sand pouring from the funnel at the 

indicated height (Figure 5C). For each trial, the stimulus images remained on the screen until a 

response was made. The pile choices were shown from the zoomed-in perspective and represented 

the ground-truth resting geometries resulting from each situation, which were generated by the 

                                                
4 The demonstration video can be viewed at https://vimeo.com/339881783/42fc4e5589 

https://vimeo.com/339881783/42fc4e5589
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MPM physical simulator with ground-truth initial conditions (funnel height, friction angle, sand 

volume, etc.). According to the ground-truth simulations, Piles #1, #2, #3, and #4 correspond with 

the piles resulting from sand pouring from funnels suspended 0.5, 1, 2, and 4 cm above the surface, 

respectively. Therefore, the correct choice for sand pouring from a 0.5 cm funnel height was Pile 

#1, the correct choice for sand pouring from a 1 cm funnel height was Pile #2, etc.  The experiment 

consisted of 4 trials presented in a randomized order. 

 

Figure 5. Intermediate frames from the demonstration video in Experiment 2 from the (A) 
zoomed-out and (B) zoomed-in view. (C) Sand pile choices in Experiment 2’s judgment task are 
displayed. 

4.3. Human Results 

Figure 6 (left) shows participant’s response proportions as a function of funnel height, as Trial #1 

(ℎ = 0.5 cm), Trial #2 (ℎ = 1 cm), Trial #3 (ℎ = 2 cm), Trial #4 (ℎ = 4 cm). Participants’ pile 

choices varied significantly across different funnel heights, 𝜒𝜒2(9) = 176.54, p < .001, Cramer’s 𝑉𝑉 

= 0.74, as pile choices shifted towards higher-numbered, flatter piles as funnel height increased. 

This finding suggests that humans take into consideration of the sand’s falling distance to influence 

their predictions about the sand’s resting geometry. 
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 However, in comparison with the ground-truth simulation, the impact of funnel height on 

the judgment of the resulting sand pile revealed the bias shift in human judgements. With the small 

funnel height in Trial #1 (ℎ = 0.5 cm) and Trial #2 (ℎ = 1 cm), although the ground-truth model 

predicts that participants should choose Pile #1 in Trial #1, Pile #2 in Trial #2, human responses 

revealed a tendency towards choosing lower-numbered, more conical piles. This bias continues as 

funnel height increases. For example, most participants incorrectly chose Pile #2 in Trial #3 (ℎ = 

2 cm), and the proportion choosing Piles #2 and #3 were also higher in Trial #4 (ℎ = 4 cm). Hence, 

in comparison with the ground-truth model, human performance did not show strong correlation 

with ground-truth predictions, 𝑟𝑟(12) = 0.17. These results indicate that participants’ predictions 

were sensitive to funnel height, but humans showed clear tendency of perceiving more conical 

resting states compared with the ground-truth simulation.  

  

Figure 6. Model prediction results compared to human judgments. The five groups (left to right) 
correspond to human judgment, ISE, BA, XGBoost, and GLM. Each bar (#1, #2, #3, and #4) 
corresponds to testing trials with funnel height 0.5, 1, 2, and 4 cm, respectively. The ground-truth 
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predictions are Pile #1 choices for Trial #1 (blue bar), Pile #2 choices for Trial #2 (magenta bar), 
Pile #3 choices for Trial #3 (yellow bar), and Pile #4 choices for Trial #4 (purple bar). Participants’ 
pile choices were consistently biased towards lower-numbered (flatter) piles. 

4.4. Simulation-Based ISE and BA Model Details  

The input variables for the ISE in Experiment 2 were funnel height (i.e., initial sand height) with 

perceptual uncertainty and sand friction angle with noise. Given the ground-truth values of initial 

funnel height and friction angle (𝐻𝐻(𝐺𝐺𝐺𝐺),𝜃𝜃(𝐺𝐺𝐺𝐺) ), 𝑁𝑁  = 10,000 noisy samples ( {�𝐻𝐻(𝑖𝑖), 𝜃𝜃(𝑖𝑖)�, i =

1, … , N}) were generated and passed to the MPM simulator, which returned the final height of the 

sand pile for each sample. Instead of choosing from 4 piles (i.e., the task presented to the 

participants), the MPM simulator compares the estimated height of the final sand pile, 

formally 𝐷𝐷�𝐻𝐻(𝑖𝑖),𝜃𝜃(𝑖𝑖)� = 𝐻𝐻𝑝𝑝 ∈ ℝ > 0, with the heights of the 4 pile options given to participants. 

The pile option with the minimum height difference was chosen as the predicted judgment for each 

sample. Finally, by aggregating predictions across the 10,000 samples, the ISE outputs a predicted 

response distribution for each trial. 

To model uncertainty in participants’ mental simulations, the ISE sampled funnel heights 

and friction angles from noisy distributions. Gaussian noise (0 mean, 𝜎𝜎𝐻𝐻2 variance) was added to 

the ground-truth funnel height in each situation. Gaussian noise was also added to the ground-truth 

friction angle 𝜃𝜃(𝐺𝐺𝐺𝐺) in logarithmic space (see Sanborn, Mansinghka, & Griffiths, 2013): 𝜃𝜃(𝑖𝑖) =

𝑓𝑓−1(𝑓𝑓�𝜃𝜃𝑖𝑖
(𝐺𝐺𝐺𝐺)� + 𝜀𝜀), where 𝜃𝜃(𝐺𝐺𝐺𝐺) is the ground truth value of the initial sand height, 𝑓𝑓�𝜃𝜃𝑖𝑖

(𝐺𝐺𝐺𝐺)� =

log (𝜔𝜔|𝜃𝜃𝑖𝑖
(𝐺𝐺𝐺𝐺)|), and 𝜀𝜀 represents Gaussian noise with 0 mean and 𝜎𝜎𝜀𝜀2 variance. Note that unlike in 

Experiment 1 where liquids were defined through demonstration, Experiment 2 shows substances 

with a known label (such as sand). Hence, the ground-truth attribute values were not scaled in 

Experiment 2. This was due to the simulated sands employing physical attribute values that are 
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consistent with sands encountered regularly in daily life. The results reported herein used the 

following model parameters: 𝜎𝜎𝐻𝐻 = 0.11,𝜎𝜎𝜀𝜀 = 0.65, and 𝜔𝜔 = 0.85. 

We further explore if the BA model – combining low-resolution spatial representations and 

physical simulations – can properly account for human judgments. The BA model approximates 

the simulation of the ISE model but with less parameters due to the reduced simulation complexity. 

The results reported herein used the following model parameters: 𝜎𝜎𝐻𝐻 = 0.17,𝜎𝜎𝜀𝜀 = 0.42, and 𝜔𝜔 =

0.58. The material is approximated using 45 rigid spheres.  

4.5. Non-Simulation Model Details 

To examine the crucial role of mental simulation in physical reasoning about sands, two non-

simulation models, GLM and XGBoost, were used as baseline models. The two models were 

trained on the three piles and tested on the remaining 𝑖𝑖∗ th pile (𝑖𝑖 = 1, 2, 3, 4, 𝑖𝑖 ≠ 𝑖𝑖∗ ). During 

training, 10,000 samples were drawn for each remaining pile (30,000 samples total) and passed to 

the MPM simulator. Each sample was generated by adding noise to both funnel heights and friction 

angles, in the same way as the method used for the simulation-based ISE model. After training on 

the 30,000 samples, both non-simulation models were tested on another 10,000 samples generated 

from noisy input based on the configuration of Pile 𝑖𝑖∗ . The final distribution was formed by 

aggregating the predictions across the 10,000 samples. 

4.6. Model Comparisons 

Figure 6 depicts human judgments in the sand pile reasoning task and the predictions of the 

simulation-based models (ISE and BA), and two data-driven models (XGBoost, GLM models). 

All four models showed correlations with human performance, 𝑟𝑟(12) = 0.91, 0.90, 0.86, and 0.77 

for ISE, BA, XGBoost, and GLM, respectively. However, the ISE model predictions showed the 

best account to human judgements than did the competing data-driven model predictions. We also 
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calculated the root-mean-square deviation (RMSD) between human response proportions and 

model results to compare the model fits. RMSD between human responses and ISE predictions for 

the four judgment trials was less than that between all the other models (see Table 2). After 

considering the number of free parameters in different models, the BA model provided the best fit 

to the human data than other models. These results reveal that physical simulation serves as a 

potential mental model to provide the best account for human performance in the task. 

Table 2. Comparison between human performance and model predictions for the ISE, BA, 
XGBoost, and GLM models in Experiment 2. High correlation value, low RMSD, and low BIC 
score indicate better fitting results. The bold text indicates the best model performance according 
to the different performance measures. 

 Ground-truth 
model 

ISE BA XGBoost GLM 

# params 5 8 4 7 6 

correlation 0.169 0.907 0.899 0.859 0.768 

RMSD 0.458 0.101 0.104 0.183 0.195 

BIC -11.13 -51.18 -61.34 -34.94 -35.68 

 
 

5. Experiment 3: Reasoning about Complex Interactions between Substances and Rigid 

Obstacles 

Our results from Experiment 2 indicate that people can predict the resting geometry of sand poured 

from a funnel, even though they may not have rich experience interacting with granular substances 

in daily-life. Experiment 3 was conducted to determine (1) whether humans can reason about 

complex interactions between substances and rigid obstacles; and (2) whether their predictions 

about the resting state of sand in novel situations differ from predictions about other more familiar 

substances, such as liquid and rigid balls. 
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5.1. Participants 

A total of 90 undergraduate students (66 females; mean age 20.9), were recruited from the UCLA 

Department of Psychology subject pool and were compensated with course credit. 

5.2. Materials and Procedure 

The procedure in Experiment 3 was similar to the design in Bates et al.’s (2015) experiment: i.e., 

participants viewed a quantity of a substance suspended in the air above obstacles and were asked 

to predict the proportion that would fall into two basins separated by a vertical divider below (see 

Figure 7). The present experiment differed from previous work in that participants reasoned about 

the resting state of one of three different substances: liquid, sand, or sets of rigid balls. Also, 

whereas the previous study used polygonal obstacles, those in the present study were circles 

varying in size. Depth information was also not present in the rendered situations. 

 

Figure 7. Initial (top) and final (bottom) state of liquid (left), sand (middle), and a set of rigid balls 
(right) for a testing trial in Experiment 3 with 4 obstacles. Number of obstacles varied between 2 
and 5 in the testing trials. The percentages indicate the amount of each substance that fell into the 
left and right basins. Only the initial state of each substance was shown in the testing trials. The 
stimulus videos can be viewed at https://vimeo.com/339881779/81fdb529ef. 

 

Situations were generated by sampling between 2 and 5 obstacle locations from a uniform 

distribution bounded by the width and height of the chamber. The diameter, d, of each obstacle 

https://vimeo.com/339881779/81fdb529ef
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was sampled from a uniform distribution: 𝑑𝑑 ~ 𝑈𝑈(0.15, 0.85). The center points for each set of 

obstacles were generated by uniformly sampling the entire width and height of the chamber. If the 

generated obstacles were placed outside of the boundary, the configuration was rejected and re-

sampled. For each substance, forty testing trials (10 trials with 2, 3, 4, and 5 obstacles) were chosen 

from the generated set such that the ground-truth proportion of liquid in the left basin was 

approximately uniform across trials: 𝐿𝐿 ~ 𝑈𝑈(0, 1). Importantly, the positions of the substance and 

configurations of obstacles were matched for each substance. 

Participants were randomly assigned to either the liquid, sand, or rigid balls condition. 

Thirty participants were assigned to each condition in a between-subjects experimental design. 

Prior to the testing trials, participants completed five practice trials with two obstacles in each 

situation in a randomized order. After answering (1) which basin the majority of the substance 

would fall into and (2) the expected proportion that would fall into the indicated basin, participants 

viewed a demonstration video (13 second duration) of the situation unfolding and were told the 

resulting proportion in the ground-truth simulation. The videos were shown to provide participants 

with visual information to infer each substance’s respective attribute: i.e., viscosity, friction angle, 

or restitution. After completing the practice trials, participants completed 40 testing trials in a 

randomized order by answering the same two questions in each trial. No feedback was given 

following the completion of each testing trial. 

5.3. Human Results 

The physics-based MPM simulator was used to determine the ground-truth proportion of each 

substance in the left and right basins for each of the generated situations. Participants’ response 

proportions for the left-basin in the testing trials were correlated with ground-truth predictions in 

the liquid, sand, and rigid balls conditions, 𝑟𝑟(38) = 0.86, 0.82, and 0.88; RMSD = 0.145, 0.170, 
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0.186, respectively, suggesting human judgments are overall consistent with physical models. 

However, we also found human judgments showed deviations from the ground-truth model 

predictions. We analyzed the deviation for each trial by subtracting the ground-truth proportion 

from each participant’s proportion response. The deviation differed significantly between the three 

substance conditions,  𝐹𝐹(2, 87) = 3.64, 𝑝𝑝 = 0.03, indicating that the difference between human 

predictions and the ground-truth status varied according to the substance type. The analysis further 

revealed that rigid balls predictions showed the largest deviation, and liquid predictions showed 

the least deviation. The next section examines whether the ISE and two non-simulation models 

can capture differences in human performance between the three substances.  

 The following analysis compares human basin predictions between experimental 

conditions. To determine whether participants’ response proportions differed between substances, 

a repeated-measures ANOVA was conducted with one within-subjects factor (trial) and one 

between-subjects factor (substance type, or condition). We found that response proportions 

showed significant differences depending on substance type, 𝐹𝐹(2, 87) = 5.72, 𝑝𝑝 < 0.01, 𝜂𝜂𝑝𝑝2 = .12, 

indicating that participants accounted for substance properties when making their predictions 

through mental simulation. The reasoning for this claim is that the substances appeared similar to 

one another in each trial (i.e., all substance volumes had the same starting diameter), and only 

visual motion cues from the demonstration videos could be used to distinguish between substances. 

However, the rigid balls were somewhat dissimilar to the liquid and sand substances due to each 

ball being separated a small distance from its neighbors. Therefore, a second analysis was 

conducted which examined predictions for liquid and sand only. Again, response proportions 

varied significantly between these two substance types, 𝐹𝐹(1, 58) = 11.84, 𝑝𝑝 < 0.01, 𝜂𝜂𝑝𝑝2 = .17. 
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5.4. Simulation-Based ISE and BA Model Details 

In the simulations for Experiment 3, the observable input variables for our ISE for each 

substance were (1) the initial, horizontal location of the substance; and (2) the locations of the 

circular obstacles in each situation. The latent substance attributes accepted by the engine were 

viscosity, friction angle, and restitution coefficient for liquid, sand, and the rigid balls, respectively. 

Given ground-truth values of substance position, obstacle position (2-5 obstacles), and substance 

attributes (𝐿𝐿𝑆𝑆
(𝐺𝐺𝐺𝐺),𝐿𝐿𝑂𝑂

(𝐺𝐺𝐺𝐺), 𝜇𝜇(𝐺𝐺𝐺𝐺), 𝜃𝜃(𝐺𝐺𝐺𝐺), 𝜀𝜀(𝐺𝐺𝐺𝐺)), 𝑁𝑁 = 2000 samples (40 situations × 50 noisy samples) 

were generated ( {�𝐿𝐿𝑆𝑆
(𝑖𝑖),𝐿𝐿𝑂𝑂

(𝑖𝑖), 𝜇𝜇(𝑖𝑖),𝜃𝜃(𝑖𝑖), 𝜀𝜀(𝑖𝑖)�, 𝑖𝑖 = 1, … , N} ). Gaussian noise was added to the 

substance’s (ground-truth) horizontal position (0 mean, 𝜎𝜎𝑆𝑆2 variance) and the obstacles’ (ground-

truth) positions in 2D space (0 mean, 𝜎𝜎𝑂𝑂2 variance). Logarithmic Gaussian noise was added to each 

substance’s ground-truth attribute value via the logarithmic transformation specified in 

Experiment 2. The results reported here utilized the following model parameters for all three 

substances: 𝜎𝜎𝑆𝑆 = 0.59, 𝜎𝜎𝑂𝑂 = 0.63, 𝜎𝜎𝜀𝜀  = 0.5, 𝜔𝜔 = 0.8. Recall that 𝜎𝜎𝜀𝜀  is the Gaussian (perceptual) 

uncertainty in logarithmic space, and 𝜔𝜔 is the weight parameter in the log transformation. Two 

thousand samples (40 situations × 50 noisy samples) were drawn for each substance. 

We further conducted simulations with the BA model – combining a low-resolution of 

spatial representations and physical simulations. The results reported herein used the following 

parameters 𝜎𝜎𝑆𝑆 = 0.38, 𝜎𝜎𝑂𝑂 = 0.53, 𝜎𝜎𝜀𝜀  = 0.6, 𝜔𝜔 = 0.6. The material is approximated using 45 rigid 

spheres.  
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5.5. Non-Simulation Model Details 

Similar to the previous experiments, two data-driven models GLM and XGBoost were tested. The 

training data were randomly generated situations with basin proportions calculated using resting 

state output from our MPM simulator. Input features were the collection of both the observable 

input variables and latent substance attributes used in the ISE prediction. In total, 6000 samples 

were used for training, and 2000 samples for testing. 

5.6. Model Comparisons 

Figure 8 depicts the comparison between human and model basin predictions from the ground-

truth (GT), ISE, GLM, and XGBoost models. The ISE model predictions account for human 

judgment better than the ground-truth model predictions—𝑟𝑟(38) = 0.92, 0.92, 0.93; RMSD = 

0.082, 0.085, 0.104 for liquid, sand, and rigid balls, respectively—indicating a superior account of 

human predictions across a range of substances. In comparison, the data-driven models GLM and 

XGBoost provided worse fit to human predictions, GLM: 𝑟𝑟(38) = 0.77, 0.78, 0.64, RMSD = 0.078, 

0.120, 0.193; XGBoost: 𝑟𝑟(38) = 0.67, 0.74, 0.71, RMSD = 1.382, 1.422, 2.067 for liquid, sand, 

and rigid balls, respectively.  

As in the previous experiment, we compared BIC measures of the models in each condition 

to account for the number of free parameters in each model. As shown in Table 3, we found that 

the BIC values of the ISE model were consistently less than the ground-truth, GLM, and XGBoost 

models for all three substances, liquid, sand, and rigid balls—further confirming the superior 

performance of the simulation-based ISE model than the data-driven model and the ground-truth 

physical model.  
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Figure 8. Model (left-basin) predictions compared with human predictions. The y-axis indicates 
participants’ mean basin predictions. The x-axis depicts basin predictions from each model. From 
left to right: Ground-truth (GT), ISE, BA, XGBoost, and GLM. Separate colors indicate the type 
of substance. 

 
Table 3. Model predictions and performance measures for the ISE, XGBoost, and GLM models 
in Experiment 3. The root-mean-squared-deviation (RMSD) is shown, in addition to the number 
of free parameters in each model and corresponding Bayesian information criterion (BIC) score 
(lower value indicates superior model fit).  

 Ground-truth 
model 

ISE BA XGBoost GLM 

# params 
(liquid, sand, rigid 
ball) 

5 
5 
1 

9 
9 
4 

5 
5 
5 

8 
8 
8 

7 
7 
7 

Correlation 
(liquid, sand, rigid 
ball) 

0.86, 
0.82,  
0.88 

0.92, 
0.92, 
0.93 

0.88, 
0.89, 
0.91 

0.67, 
0.74, 
0.71 

0.77, 
0.78, 
0.64 

RMSD 
(liquid, sand, rigid 
ball) 

0.145 
0.170, 
0.186 

0.082, 
0.085, 
0.104 

0.103, 
0.102, 
0.111 

1.382, 
1.422,  
2.067 

0.078, 
0.120,  
0.193 

BIC  
(liquid, sand, rigid 
ball) 

-136.04, 
-123.31, 
-116.12 
 

-166.88, 
-164.01, 
-147.87 

-163.40, 
-164.18, 
-157.41 

55.39, 
57.68, 
87.60 

-178.26, 
-143.80, 
-105.78 
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It is worth noting that our ISE achieved consistent performance across all three substances, 

whereas GLM and XGBoost were less capable of predicting human judgments about rigid balls 

and liquid. In addition, the ISE model used only one third of the training samples that XGBoost 

and GLM needed, demonstrating that a generative physical model with noisy perceptual inputs is 

capable of learning with a smaller number of samples than data-driven methods. 

 
6. General Discussion 

Results from the experiments reported herein provide converging evidence that humans can predict 

outcomes of novel physical situations involving non-solid substances by propagating approximate 

spatial representations forwards in time using mental simulation. This stands in contrast to early 

research in rigid-body collisions suggesting that human physical predictions do not obey ground-

truth physics, instead relying on heuristics (Gilden & Proffitt, 1994; Runeson, Juslin, & Olsson, 

2000). Overall, our results agree with Bates et al.’s (2015) findings: i.e., ISE predictions entailing 

the noisy Newton framework outperformed ground-truth and data-driven models in each 

experiment, further reinforcing the critical role of perceptual noise and physical dynamics in 

intuitive physics reasoning. 

Our results also indicate that people naturally attend to latent attributes when reasoning 

about familiar and unfamiliar substance states following observation of realistic demonstration 

animations. Although mental simulation has been demonstrated as a default strategy in other 

mechanical reasoning tasks (Hegarty, 2004; Clement, 1994), the participants in Schwartz and 

Black’s (1999) experiments failed to spontaneously represent and simulate physical properties 

relevant to the judgment task. By designing tasks with regard to the three features outlined in 

Section 1, our participants were able to mentally simulate dynamic events and did not appear to 

rely on explicit or heuristic-based reasoning. While the present study indicates a set of simulation-
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inducing task characteristics, further research should aim to determine specific experimental 

factors that trigger simulation strategies. Specifically, can the conditions employed in the present 

tasks extend to classical rigid-body and fluid dynamics problems to resolve the discrepancy 

between people’s explicit predictions and tacit judgments, and if so, what additional task 

characteristics serve to facilitate mental simulation? 

6.1. Are Precise Numerical Simulation Methods Needed to Explain Human Performance? 

Taken together, our results demonstrate that human predictions and judgments about substance 

dynamics can be accounted for by a unified simulation method with uncertainty implemented into 

underlying physical variables. However, classical research in artificial intelligence has dismissed 

robust mental simulation as a strategy for physical reasoning due to its inherent complexity, often 

proposing simplified qualitative models instead (De Kleer & Brown, 1984). While the ISE model 

employed in the current study requires extensive numerical evaluation to make predictions about 

future substance states, humans appear to do so with precision and accuracy in comparatively small 

amounts of time. Results from the BA model provide evidence that humans approximate the 

dynamics of substances in a manner consistent with ground-truth physics based on coarse 

representations of substance elements. This circumvents one of the key problems in applying 

particle-based simulation methods to human physical inference: i.e., it is unlikely that people 

represent substances as collections of hundreds (or thousands) of constituent particles when 

mentally simulating their movements across time. Our BA model results further demonstrate that 

precise numerical evaluation of ground-truth differential equations is not needed to account for 

human judgments in our viscous liquid-pouring task. Success of the proposed physical 

approximation also reinforces the application of learning-based (deep learning) approaches, which 

encode how discrete objects interact with one another through observation of large sets of dynamic 
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training stimuli (Battaglia & Pascanu, 2016; Chang, Ullman, Torralba, & Tenenbaum, 2016; 

Grzeszczuk, Terzopoulos, & Hinton, 1998). Recent research has shown success in predicting the 

dynamics of deformable objects (Mrowca, et al., 2018) and non-solid substances (Li, Tedrake, 

Tenenbaum, & Torralba, 2018) by representing entities as collections of interacting particles. The 

success of our BA model, in addition to the cited work, suggests a possible algorithm-level 

explanation for how people may learn to emulate the physical laws underlying substance dynamics 

throughout long periods of observation in daily life. Importantly, underlying physical knowledge 

does not need to be “written into” these learning-based models for them to simulate the dynamics 

of entities in novel situations. 

 Another benefit of the BA model approach is that uncertainty can be distributed throughout 

the balls which comprise the substance “whole”.  When a substance is encountered in the real 

world, each of its portions likely entails varying magnitudes of uncertainty. For example, if a 

substance is spilled onto a table, an observer will likely be more uncertain about the positions and 

movements of substance elements that are moving in the center of the table compared with 

elements near the edge. After all, the risk that substance elements near the center will spill onto 

the observer is minimal. Furthermore, when a liquid is poured from a container, elements near the 

rim are most likely given more attention since their positions and motions indicate whether spilling 

is imminent. It is unclear, however, whether particle-based simulation methods will converge to a 

stable solution when substance element positions and motions are jittered with varying magnitude, 

especially if uncertainty is added during the simulated event. However, the positions and motions 

of rigid objects can be perturbed at any point during a simulated event without the risk of causing 

their solutions to diverge (Smith & Vul, 2013). Thus, the BA model affords the implementation of 
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multiple uncertainty modules, which can be used to further examine how situations are 

approximated over the course of mental simulation events. 

6.2. Uncertainty in Numerical Physics Simulation 

While human results are generally consistent with the physics-based simulation models coupled 

with noisy input variables, there remain discrepancies between model predictions and human 

judgments. Although our ISE and BA models accounted for perceptual uncertainty in each 

situation, the simulations themselves closely approximated normative physical principles. This 

assumption ignores a key component of uncertainty in mental simulation, namely that physical 

entities and their motions across time are determined via a precise generative model with high 

spatiotemporal resolution. In other words, given the same initial conditions, our ISE and BA 

models would arrive at the same outcome each time. Adding “stochastic noise” to physical 

dynamics (i.e., mental simulation uncertainty), however, has been shown to increase model 

performance when predicting human responses in simple physical situations (Smith & Vul, 2013). 

While mental simulation uncertainty can easily be built into rigid-body collisions—e.g., by 

perturbing the simulated position, speed, and/or direction of a projectile at various points in time—

employing this strategy in the present physical simulations would preclude stable numerical 

evaluation. One potential avenue for introducing stochastic noise into numerical simulators (e.g., 

MPM, SPH, etc.) would be to add noise into the attributes themselves, which influence underlying 

substance dynamics. However, while it makes sense to suppose that the spatially represented 

positions or motions of discretized substance particles may change with time, it is unclear whether 

human estimates of the underlying attributes also fluctuate. We hope that future work utilizing 

substance simulation engines in intuitive physics will pursue this direction of research. 
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 The most significant reason for exploring the role of stochastic uncertainty in physical 

inference via mental simulation is to take pressure off of perceptual uncertainty model components 

in accounting for biases in human predictions. Notably, if other components of uncertainty are at 

play, our current models might overestimate the magnitude of perceptual noise to account for their 

contribution. However, this question requires more than a purely computational approach. 

Specifically, empirical evidence supporting the role of perceptual and/or stochastic uncertainty in 

mental simulation is needed. Moreover, independent measurements of the magnitude of each type 

of uncertainty would allow for the comparison between fitted model parameters and those recorded 

directly from human cognition. It is the authors’ opinion that the aforementioned pursuit would 

greatly support the noisy Newton framework as a cognitive model for human physical inference. 

6.3. Developing Intuitions About Physical Dynamics 

Although the computational results reported herein support the role of noisy and approximate 

mental simulation when reasoning about novel physical situations, it remains unclear how this 

capacity develops in humans. A breadth of findings in the developmental literature have 

investigated the periods of development in which sensitivity to core physical principles is 

established (Baillargeon R. , 1994; Baillargeon R. , 2004; Kotovsky & Baillargeon, 1998; Spelke, 

Breinlinger, Macomber, & Jacobsen, 1992). Across many physical phenomena (e.g., support, 

solidity, continuity, etc.), findings show that infants initially represent variables in a qualitative 

“all or none” fashion: e.g., when deciding whether a surface will support a box resting on top of 

it, infants first represent whether or not the box is completely on top of the surface. As the infant 

ages and gains experience in a given domain, she eventually learns to attend to the proportion of 

the box resting on the surface. In other words, primitive variable distinctions and corresponding 

rules which govern physical intuitions become more sophisticated over time. A core question is 
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how sophisticated to these rules and variables become? And if rules are enriched to the point where 

they closely approximate ground-truth physical principles and enable mental simulation, when 

does this capacity emerge? 

 Previous developmental literature suggests that infants initially utilize categorical (rule-

based) reasoning when forming physical expectations (Baillargeon R. , 2002). For example, in the 

context of collision situations, infants as young as six months old understand that larger motor 

objects launch projectiles farther than smaller ones. However, it is also possible that infants are 

utilizing mental simulation based on highly simplified approximations to physical dynamics to 

form their expectations. The second hypothesis is consistent with recent developmental research 

showing that 12-month-old infants’ expectations about moving objects are consistent with a 

probabilistic inference model employing abstract principles of object motion (Teglas, et al., 2011). 

It is tempting to propose that humans—regardless of their age—utilize one reasoning system over 

the other, or that one reasoning system preempts the other in development. However, it may be 

that physical intuitions rely on both reasoning systems, regardless of age. Moreover, these systems 

might engage with and enrich one another as experience with the world develops. In the context 

of the current experiments, we did not find evidence that heuristic reasoning was utilized to form 

predictions and judgments. However, it is possible that useful heuristics could be learned with 

experience in order to alleviate the cognitive resources needed for mental simulation. It is our hope 

that future research will investigate this interplay and individual differences in intuitive physics.  

6.4. Concluding Remarks 

Taken together, the current study provides evidence that people’s predictions and judgments 

about the dynamics of substances are consistent with a computational model utilizing 

approximated Newtonian principles and noisy perceptual/physical inputs. The empirical findings 
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reveal that people are highly sensitive to the different dynamics of liquid, sand, and rigid objects 

in performing physical reasoning tasks. Finally, the modeling results show that a simulation 

method which approximates substances as a collection of rigid balls can provide a good account 

for human performance in lieu of advanced numerical simulation methods. 

The results reported herein demonstrate that human expectations about the dynamics of non-

solid substances are consistent with ground-truth physics, given that their representations are prone 

to observational and physical uncertainty. Moreover, people can predict the future status of 

situations involving granular materials (i.e., sand), which is less common in daily life than viscous 

liquids or collections of rigid objects. Results from the BA model also demonstrate the viability of 

coarse spatial approximation in substance-related situations, suggesting that human observers 

could be doing something similar when reasoning about the dynamics of liquids and other 

deformable materials.   
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Appendix A: Additional ISE Details 

Comparison between MPM and SPH 

The ISE model presented in the paper is formed under the same framework as Bates et al.’s (2015) 

IFE, although the two models use different physical simulation methods. Our ISE model employs 

the MPM simulation method, whereas the IFE model uses the SPH method. Indeed, SPH is a viable 

method for simulating the dynamics of liquids, granular materials, and colliding objects, although 

MPM provides a more efficient and accurate means of doing so (see Appendix B for further 

details). We do not envision that the predictions of the two methods would differ substantially 

from one another when applied to a given set of stimuli.  

Query Functions 

In the experiments reported herein, participants were tasked with reasoning about different 

physical properties of substances in dynamic scenes. The aspect of the physical environment 

critical to each task ranged from (1) when a liquid element exceeded a critical position in 3D space 

(Experiment 1); (2) the 3D geometry of a sand pile resting on a table (Experiment 2); and (3) the 

volume of liquid contained in two alternative receptacles, or basins (Experiment 3). The ISE model 

matches human expectations about different situations by probing different aspects of the 

respective environment. This is achieved by querying substance states (drawn from predictive 

probability distributions) and aggregating query results to form predicted response distributions. 

The query functions used in each experiment differ from one another, both in their variables of 

interest, as well as the point in time in which they are applied. We summarize the corresponding 

functions for each experiment as follows. 

Experiment 1: When will it pour? 
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The query function 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is applied to the entire state sequence 𝑆𝑆0:𝑇𝑇. The query function calculates 

the time step in which one of the two substances begins to spill over the rim of its respective 

container. The container whose substance which has not yet poured is output as the predicted 

choice.  

Experiment 2: Which sand pile is correct? 

The query function 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is applied to the final substance state 𝑆𝑆𝑇𝑇. The query function calculates 

the diameter of the sand pile at the end of the simulation and is compared with the ground-truth 

diameter of each pile choice. The closest match is output as the predicted choice. 

Experiment 3: Which basin will the substance fall into? 

The query function 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is applied to the final substance state 𝑆𝑆𝑇𝑇. The query function calculates 

the proportion of the substance which fell into the left basin. This proportion is output as the 

predicted estimate. 

Predicted Judgment 

Given the above query functions, we further define the predicted judgment for each trial in each 

experiment. The predicted judgment 𝐽𝐽𝑞𝑞  for each query 𝑞𝑞 is calculated by finding the expected 

value of each query function over the state sequence 𝑆𝑆0:𝑇𝑇: 

 

 𝐽𝐽𝑞𝑞 = 𝐸𝐸[𝑄𝑄𝑞𝑞|𝑆𝑆0̅] (2) 

 
𝐽𝐽𝑞𝑞 = � 𝑄𝑄𝑞𝑞(𝑆𝑆0:𝑇𝑇)

𝑆𝑆0:𝑇𝑇

𝑃𝑃(𝑆𝑆0:𝑇𝑇|𝑆𝑆0:𝑇𝑇−1,𝑆𝑆0̅). (3) 

Appendix B: MPM Simulator Details 

The Material Point Method (MPM) produces physically accurate and visually realistic simulations 

of the dynamics of liquid (Jiang C. , Schroeder, Teran, Stomakhin, & Selle, 2016) and sand (Klár, 
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et al., 2016), in addition to general continuum materials such as stiff elastic objects (Jiang C. , 

Schroeder, Teran, Stomakhin, & Selle, 2016). Unlike the Smoothed Particle Hydrodynamics 

(SPH) method—which purely relies on particles to discretize the computational domain—the 

MPM uses both particles and a background Eulerian grid. The Navier-Stokes equations are solved 

on the grid, allowing for: (1) accurate derivative calculations; (2) well-defined free surface and 

solid boundary conditions; and (3) an accurate first-order approximation of physical reality. The 

MPM also circumvents common artifacts of SPH, such as underestimated density near free 

surfaces and weakly compressible artifacts. In fact, the requirement for incompressibility is crucial 

in the substance dynamics problems studied in the present study. We chose not to use SPH because 

it does not guarantee a divergence-free velocity field unless additional computational components 

are included. MPM, however, maintains the benefits of particle-based methods due to its hybrid 

particle/grid nature. The presence of particles in the current model serves to facilitate visualization 

and the tracking of material properties. Besides modeling liquids, the state-of-the-art physics-based 

simulation methods have also provided realistic cues for modeling complex tool and tool-uses 

(Zhu, Zhao, & Zhu, 2015), generic containers (Liang, Zhao, Zhu, & Zhu, 2015), and soft human 

body dynamics (Zhu, Jiang, Zhao, Terzopoulos, & Zhu, 2016). The following paragraphs present 

a mathematical overview of our MPM simulator, which provides a unified, particle-based 

simulation framework that handles rigid balls, liquid, and sand with essentially the same numerical 

algorithm, albeit with appropriately differing material parameters. The MPM method is physically 

accurate, numerically stable, and computationally efficient, enabling us to synthesize a large set of 

stimuli in a short amount of time by simply varying material parameters and the locations of the 

initial objects and colliding geometries. Running each simulation in the same framework for the 

purposes of the present study also enables fair comparisons among the three types of substances, 
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since we avoid potential inconsistencies in the numerical accuracies of multiple simulators 

specialized to each material. 

The differential equations governing particle-based substance dynamics utilize the 

principles of conservation of mass and momentum: 

 
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷 + 𝜌𝜌∇ ∙ 𝒗𝒗 = 0, (4) 

 𝐷𝐷𝒗𝒗
𝐷𝐷𝐷𝐷 = ∇ ∙ 𝝈𝝈 + 𝜌𝜌𝒈𝒈, 

 

(5) 

where 𝜌𝜌  is the density of the simulated substance, 𝝈𝝈 is the stress imparted on a particle, 𝒈𝒈 is 

gravitational acceleration, and 𝐷𝐷
𝐷𝐷𝐷𝐷

 is the material derivative with respect to time. The equations are 

discretized spatially and temporally with a collection of Lagrangian particles (or material points) 

and a background Eulerian grid. The material type of the simulated substances is naturally 

specified from the constitutive model, which defines how a material exerts internal stress (or 

forces) as a result of deformation. 

 Rigid balls are simulated as highly stiff elastic objects with the neo-Hookean 

hyperelasticity model, described through the elastic energy density function: 

 

𝛹𝛹(𝑭𝑭) =
𝜇𝜇
2

(𝑡𝑡𝑡𝑡(𝑭𝑭𝑻𝑻𝑭𝑭) − 𝑑𝑑) − 𝜇𝜇 log(𝐽𝐽) +
𝜆𝜆
2 log2(𝐽𝐽), 

 
(6) 

where 𝑑𝑑  is the dimension (2 or 3), 𝑭𝑭  is the deformation gradient (i.e., the gradient of the 

deformation from undeformed space to deformed space), 𝐽𝐽 is the determinant of 𝑭𝑭, and both 𝜇𝜇 and 

𝜆𝜆 are Lamé parameters that describe the material’s stiffness. 

 Liquid is modeled as a nearly incompressible fluid, with its state governed by the Tait 

equation (Batchelor, 2000): 
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𝑝𝑝 = 𝑘𝑘 ��

𝜌𝜌0
𝜌𝜌 �

𝛾𝛾
− 1� , 

 
(7) 

where 𝑝𝑝 is the pressure, 𝜌𝜌 and 𝜌𝜌0 are the current and original densities of the particles, 𝛾𝛾 = 7 for 

water, and 𝑘𝑘 is the bulk modulus (i.e., how incompressible the liquid is). Through this Equation-

of-State (EOS), the stress inside a non-viscous liquid is given by 𝜎𝜎 = −𝑝𝑝I, where I is the identity 

matrix. We further adopt the Affine Particle-In-Cell method (APIC; Jiang C. , Schroeder, Selle, 

Teran, & Stomakhin, 2015) to substantially reduce numerical error and artificial damping. This 

enables us to simulate substances with better accuracy than alternative methods in computer 

graphics. 

 Compared with liquids, the motion of dry sand is largely determined by the frictional 

contact between grains. In the theory of elastoplasticity, the modeling of large deformation (e.g., 

frictional contact) can be based on a constitutive law that follows the Mohr-Coulomb friction 

theory. Following Klár et al. (2016), we simulate dry sand based on the Saint Venant Kirchhoff 

(StVK) elasticity model combined with a Drucker-Prager non-associated flow rule. Plasticity 

models the material response as a constraint projection problem, where the feasible region (or yield 

surface) of the final material stress is restricted to be inside 

 

𝑡𝑡𝑡𝑡(𝝈𝝈)𝑐𝑐𝐹𝐹 + �𝝈𝝈 −
𝑡𝑡𝑡𝑡(𝝈𝝈)
𝑑𝑑 �

𝐹𝐹
≤ 0, 

 
(8) 

where 𝑑𝑑 is the dimension and 𝑐𝑐𝐹𝐹 is the coefficient of internal friction between grains of sand. The 

stress (i.e., the deformation gradient) of each sand particle is projected onto the yield surface to 

satisfy the second law of thermodynamics. 
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