Lecture 2: Spatial And-Or graph
for representing the scene-object-part-primitive hierarchy

Song-Chun Zhu
Center for Vision, Cognition, Learning and Arts
University of California, Los Angeles

At CVPR, Providence, Rhode Island
June 16, 2012

SIG-12: Tutorial on Stochastic Image Grammar
Evidences for hierarchical representations of image patterns are abundant in neuroscience and psychophysics. But,

1, There are different theories of interpretations, e.g. each unit (neuron) can be viewed as a

• filter --- MRF/CRF
• base function --- Wavelet, sparse coding
• classifier (decision makers) --- machine learning

2, Unsupervised learning of the hierarchy lags far behind in computer vision and machine learning.
Early evidence in Neuroscience: what cells in V1 see?

Huber and Weissel 1960s on cat experiments

Single neuron recording in the V1 area in cats and monkeys.

This leads to many explanations: edge detection, texton, and Gabor filters in the 1980s. It also inspired wavelets in thinking in the 1980s-90s. By the 2000s, people began to view it as classifiers.
Psychophysics evidence for textons

(1) textures vs textons (Julesz, 60-70s)

textons

The subject is told to detect a target element in a number of background elements. In this example, the detection time is independent of the number of background elements.
Psychophysics evidence for textons

textures

![Text textures](image)

(a)

Response time T

Distractors # n
Neurons in the late stage of the visual pathway

A Jennifer Aniston neuron was found

UCLA-Caltech labs [Fried, and Koch] record neurons in the human medial temporal lobe (MTL).

Proposed compositional hierarchies in computer vision

Recent well-engineered model: deformable part templates

1. These models are mostly And-structures in a hierarchy, without mixing with Or-structures.
2. These work do not address learning reconfigurable structures in an unsupervised way.
3. What are the principles for unsupervised learning?

The current literature on hierarchical/compositional models has been very confusing to new students.
Outline of this lecture:

1, Three ways to represent visual concepts
 • **Ensembles** by statistical physics and MRF models;
 • Low dimensional **subspace or manifold** in Sparse coding;
 • **Language** by grammar

2, And-Or graph as a unifying representation
 • And-Or graph
 • Parse graph
 • Configurations
 • Probabilistic models

3, Case studies for spatial-AOG
 • Object grammars: human parsing
 • Scene grammars: 3D scene parsing
1, Visual Concepts – the units of visual knowledge

In Mathematics and logic, concepts are equal to deterministic sets, e.g. Cantor, Boole, or spaces in continuous domain, and their compositions through the “and”, “or”, and “negation” operators.

\[(A \cap \overline{B} \cap D) \cup (B \cap \overline{C})\]

Visual concepts:
- e.g. noun concepts: human face, vehicle, chair?
- verbal concept: opening door, making coffee?

The world to us is fundamentally stochastic.

We have three ways to define stochastic sets for visual concepts.

Method 1, Stochastic set in statistical physics

Statistical physics studies **macroscopic** properties of systems that consist of massive elements with **microscopic** interactions.

e.g.: a tank of insulated gas or ferro-magnetic material

\[N = 10^{23} \]

A state of the system is specified by the position of the \(N \) elements \(X^N \) and their momenta \(p^N \)

\[S = (x^N, p^N) \]

But we only care about some global properties

Energy \(E \), Volume \(V \), Pressure, ….

Micro-canonical Ensemble = \(\Omega(N, E, V) = \{ s : \ h(S) = (N, E, V) \} \)
It took 30-years to make this theory work in vision

$$a \text{ texture} = \Omega(h_c) = \{ I : h_i(I) = h_{c,i} \hspace{1cm}, i = 1,2,...,K \}$$

h_c are histograms of Gabor filters

Equivalence of deterministic set and probabilistic models

Theorem 1
For a very large image from the texture ensemble $I \sim f(I; h_c)$ any local patch of the image I_Λ given its neighborhood follows a conditional distribution specified by a FRAME/MRF model $p(I_\Lambda | I_{\partial \Lambda} : \beta)$

Theorem 2
As the image lattice goes to infinity, $f(I; h_c)$ is the limit of the FRAME model $p(I_\Lambda | I_{\partial \Lambda} : \beta)$, in the absence of phase transition.

$$p(I_\Lambda | I_{\partial \Lambda} ; \beta) = \frac{1}{Z(\beta)} \exp\{-\sum_{j=1}^{k} \beta_j h_j(I_\Lambda | I_{\partial \Lambda})\}$$

Method 2, Lower dimensional sets or subspaces

\[\text{a texton } = \Omega(h_c) = \{ I : I = \sum_{i} \alpha_i \varphi_i, \quad \| \alpha \|_0 < k \} \]

\(K \) is far smaller than the dimension of the image space.
\(\varphi \) is a basis function from a dictionary.

Here is an example of how real world data can be truly complex – non-Gaussian and highly kurtotic. This is an iso-density contour for a 3D histogram of log(range) images (2x2 patches minus their means) (Brown range image database, thesis of James Huang)

Sparsity and harmonic analysis
Stochastic sets from sparse coding

Learning an over-complete image basis from natural images

\[I = \sum_i \alpha_i \psi_i + n \]

(Olshausen and Fields, 1995-97)

Look at the space of image patches

image space

implicit manifolds

explicit manifolds

+ + +
Two regimes of stochastic sets

Sets defined by *implicit* vs. *explicit* functions

\[\Omega = \{ I : h(I) = h_0 \} \]

\(h(I) \) is some image feature/statistics

\[\Omega = \{ I : I = g(w; \Delta) \} \]

g is a generation function,
w is intrinsic dimension
\(\Delta \) is a dictionary

Flat object template: mixing the textures and textons

Unsupervised Learning of Hybrid Object Templates

Z. Si and S.C. Zhu, CVPR09, TPAMI 12
Method 3, Stochastic sets by Grammar

A ::= aB | a | aBc

A production rule can be represented by an And-Or tree

The language is the set of all valid configurations derived from a note A.

\[L(A) = \{(\omega, p(\omega)) : A \xrightarrow{R^*} \omega \} \]

The elements in this set has varying configurations and dimensions.
2, And-Or graph as a unifying representation

A grammar production rule can be converted in an And-or tree fragment:

\[A \rightarrow ab \mid cc \]

The language of a node A is the set of all valid configurations

\[L(A) = \{ \text{valid configurations} \} \]
The expressive power of and-or trees

Consider And-Or tree with branching factor = 3 and depth =2.

Object grammars are short and does not allow infinite recursion. Therefore the space of all Object grammars has smaller capacity than other Logic formulas and needs less training examples to learn (See lecture 10 for PAC learning).

Total: $1+3+9+27 = 30$ nodes with 81 leaves

$(3^3)^3 = 3^{12} = 531,441$ configurations
And-Or graph, parse graphs, and configurations

Each category is conceptualized to a grammar whose language defines a set or “equivalence class” for all the valid configurations of the each category.
An example: the clock category

To design a vision algorithm that reads clocks, we need grammar. This cannot be achieved by The flat HoG + SVM paradigm.
And-Or templates grounded on textures and textons

Example image data

Learned AND/OR Template

Typical examples of corresponding branches

Learned part dictionary (terminal nodes)

This is learned unsupervisedly by an information projection principle. See lecture 10.
How does a set for an object looks like in the image space?

Union space (OR)

Product space (AND)
Defining a probability on the AoG

Take language as a simple example. A sentence \(\omega = (\omega_1, \omega_2, \ldots, \omega_n) \)

The context free probability of \(w \) and a parse tree \(t \) is
Deriving the probability model for a context sensitive grammar

The probability for a parse tree \(t = (r_1, r_2, \ldots, r_K) \)

\[
p(t) = p(r_1)p(r_2) \cdots p(r_K) = \frac{1}{Z} \exp\{- \sum_{r_i \in t} \lambda(\omega(r_i))\}
\]

the probability for a bi-gram Markov chain (or field) of words \(W \)

\[
p(W) = p(w_0) \prod_{i=1}^{n} p(w_i|w_{i-1}) = \frac{1}{Z} \exp\{- \sum_{i} \phi(w_i) - \sum_{<i,j>} \psi(w_i, w_j)\}
\]

which are derived from maximum entropy with statistical constraints

\[
E[\phi(w_i)] = \mu_i, \quad \forall i.
\]

\[
E[\psi(w_i, w_j)] = \mu_{ij}, \quad \forall <i,j>.
\]

We pursue a model that should observe the statistical constraints above (for contexts)
while minimizing a KL-divergence to the tree model (for hierarchic structures).

\[
p(g; G)^* = \arg \min KL(p(g; G) \parallel p(t))
\]
Formulation: the Probability model

By solving this constrained optimization problem, one obtains a joint probability on the parsing graph G.

\[
p(\mathbf{pt}(\omega)) = \frac{1}{Z} h^*(\omega_1) \prod_{i=1}^{n-1} h^*(\omega_{i+1}, \omega_i) \cdot \prod_{j=1}^{n(\omega)} p(\gamma_j).
\]

Rewrite it as

\[
p(\mathbf{pt}(\omega); \Theta) = \frac{1}{Z} \exp \left\{ - \sum_{j=1}^{n(\omega)} \lambda(\gamma_j) - \sum_{i=1}^{n-1} \lambda(\omega_{i+1}, \omega_i) \right\}
\]

The first term alone stands for a SCFG. The second term is the potentials (energy terms) on the context (chain).
This can be easily transferred to the image domain

The probability is defined on the parse graph pg

$$p(pg; \Theta, \mathcal{R}, \Delta) = \frac{1}{Z(\Theta)} \exp\{-\mathcal{E}(pg)\},$$

where $\mathcal{E}(pg)$ is the total energy,

$$\mathcal{E}(pg) = \sum_{v \in \text{Vor}(pg)} \lambda_v(\omega(v)) + \sum_{t \in T(pg) \cup \text{Vand}(pg)} \lambda_t(\alpha(t))$$

$$+ \sum_{(i,j) \in E(pg)} \lambda_{ij}(v_i, v_j, \gamma_{ij}, \rho_{ij}).$$

$$Z = Z(\Theta) = \sum_{pg} \exp\{-\mathcal{E}(pg)\}.$$
3. Case studies: Spatial-AoG for human parsing

Rothrock and Zhu, 2011
Appearance model for terminals learned from images

Grounding the symbols
Synthesis (Computer Dream) by sampling the S-AoG
Local computation is hugely ambiguous

Dynamic programming and re-ranking

![Diagram showing arm and appearance only with images of people and diagram]

- arm
- appearance only
- ua
- la
- hand
Composing Upper Body

upper body

appearance only

head
torso
arm
Composing parts in the hierarchy

See how locally very ambiguous messages are integrated to form clear global perception!
Top-down / bottom-up inference
Demo: Top-down / bottom-up inference for human parsing

by Brandon Rothrock and Tianfu Wu, 2011.
Case studies: Spatial-AoG for scene parsing

Results on the UCLA dataset

Bottom-up line detection
Contextual relations

(c) AND rule

(d) SET rule
Hierarchical cluster sampling from grammar model

(i) initial distribution (ii) with cooperative(+) relations (iii) with competitive(-) relations (iv) with both (+/-) relations

The prior sampling from Stochastic Scene Grammar with/without contextual relations

The hierarchical cluster sampling process.
3D scene reconstruction from a single image
Parsing results on UCLA dataset

1. with AND/OR rule

2. with AND/OR/SET rule

Parsing results on UIUC dataset
More Results of Indoor Parsing
Demo of Spatial-AoG for scene parsing

Indoor_scene_parsing_demo.avi

This demo is made by Yibiao Zhao at UCLA