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Abstract.

Due to strong demand for the ability to enforce top-down struc-
ture on clustering results, semi-supervised clustering methods using
pairwise constraints as side information have received increasing at-
tention in recent years. However, most current methods are passive
in the sense that the side information is provided beforehand and
selected randomly. This may lead to the use of constraints that are
redundant, unnecessary, or even harmful to the clustering results. To
overcome this, we present an active clustering framework which se-
lects pairwise constraints online as clustering proceeds, and propose
an online constraint selection method that actively selects pairwise
constraints by identifying uncertain nodes in the data. We also pro-
pose two novel methods for computing node uncertainty: one global
and parametric and the other one local and nonparametric. We evalu-
ate our active constraint selection method with two different semi-
supervised clustering algorithms on UCI, digits, gene and image
datasets, and achieve results superior to current state of the art ac-
tive techniques.

1 Introduction

Many semi-supervised clustering methods have been proposed to en-
force top-down structure while clustering [3,5, 11, 15, 16,23]. These
methods allow the user to incorporate pairwise constraints, which
may be either must-link (the two points/nodes belong in the same
cluster) or cannot-link (the two points/nodes belong in different clus-
ters), on the data as side information. These papers have shown that
the use of pairwise constraints can significantly improve the corre-
spondence between clusters and semantic labels when the constraints
are selected well. [ 7] demonstrates that poorly chosen constraints can
lead to worse performance than no constraints at all. Moreover, in
real world problems each added constraint represents an additional
real world cost, so maximizing the effectiveness of each constraint
in order to minimize the total number of constraints needed is an
important goal.

Currently, most work in semi-supervised clustering ignores this
problem and simply selects a random constraint set (see above cited),
but some work has now been done on active constraint selection
methods [2, 10, 17, 21, 24], which allow semi-supervised clustering
algorithms to intelligently select constraints based on the structure of
the data and/or intermediate clustering results.

Active selection methods can be stratified according to whether
nodes or node-pairs are the primary element on which the process
is based. Node-based methods first select nodes of interest, and then
query constraints based on those nodes [2,9,17], while those methods
that directly seek pair constraints [10,21,24], define an uncertainty
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measure on pairs and iteratively seek the most uncertain pairs during
constraint selection.

Both of these current approaches have drawbacks, however. Cur-
rent node-based methods function by selecting all of their constraints
in one long selection phase before clustering. Because of this, they
cannot incorporate information from actual clustering results into
their decisions, and may thus choose many unnecessary constraints
(for instance, constraints regarding points that the algorithm is able
to cluster correctly even without side information). In contrast, the
pair-based methods choose constraints online based on intermediate
clustering results, but due to the nature of the pair selection problem
(n? possible constraints to rank and select from) have thus far been
limited to either binary or small-scale clustering problems.

In this paper, we overcome these limitations and present a node-
based constraint selection framework (illustrated in Figure 1) that
combines a preprocessing stage with an online, iterative process that
selects uncertain nodes based on intermediate clustering results. Our
framework is general to any pair-based semi-supervised clustering
algorithm.

In the preprocessing stage, we adopt the farthest-first strategy to
identify representative nodes in each cluster (similar to [2] and [17]).
Subsequently, we repeat an online cluster-select-query loop to allow
data and clustering-dependent constraints to be actively added to the
constraint set. In each iteration, our algorithm seeks the most un-
certain node in the dataset. The algorithm then queries constraints
between this node and previously identified nodes representing each
cluster. An online oracle then provides the must-link or cannot-link
value for each constraint.

We define two notions of node uncertainty, from a local nonpara-
metric and one from a global parametric view. The local measure is
based on cluster contradiction between a point and its nearest neigh-
bors, while the global measure is computed from cluster confusion
in a global mixture model of the data.

Why uncertainty? If enough information has been extracted to
unambiguously identify the correct relationship between each true
cluster and each node, then the clustering algorithm should achieve
perfect accuracy [2, 17]. Intuitively, then, uncertainty in the cluster
identity of nodes leads to clustering errors. Furthermore, in this pa-
per we show that, given some relaxation, the most uncertain node is
the same as the node that will maximally reduce the uncertainty of
the whole dataset if queried. Thus, by issuing queries that will un-
ambiguously identify the cluster of the most uncertain node at each
iteration we are able to make optimal progress toward a completely
certain, and thus trivially solvable, clustering problem.

Why node uncertainty? We adopt an approach based on node
rather than pair uncertainty for two reasons. First, an uncertain pair
may be uncertain either because it contains one uncertain node or



because it contains two uncertain nodes. In the latter case, a con-
straint between these nodes yields limited information because the
constraint will not extrapolate well beyond these two nodes. Second,
pair selection has an inherently higher complexity due to the pres-
ence of n? constraints for every n nodes, limiting the scalability of a
pair-based approach.

Main contributions. Our paper makes four contributions:

e We present a new active selection framework, Online Constraint
Selection via Node Uncertainty (OCSNU), with general applica-
bility to pair-based semi-supervised clustering methods.

e We propose and justify two novel definitions of node uncertainty.

e We show theoretically that selecting the most uncertain node at
each iteration yields the maximum reduction in total uncertainty
for the dataset.

e We test our framework and constraint selection methods on two
different semi-supervised clustering algorithms and conclusively
obtain strong results.

We compare OCSNU with baseline and state of the art active cluster-
ing and active learning techniques on UCI machine learning datasets,
two digits datasets [1], one gene dataset [6] and part of the Caltech
101 image dataset [8]. The results show that given the same number
of pairs queried, OCSNU using our node uncertainty measures can
obtain better accuracy than existing methods.

Relation to active learning. Active query selection has previously
seen extensive use in the field of active learning. [20] and [4], for
example, both offer methods similar to ours in that they select and
query uncertain nodes. However, in active learning algorithms, the
oracle needs to know the class label of the queried data point. This
approach is not applicable to many clustering problems, where the
oracle can only give feedback about the relation between pairs of
nodes. Though we implicitly label queried nodes by comparing them
to a set of exemplar nodes representing each cluster, we do so strictly
via pairwise queries.

Additionally, though for the sake of comparison we begin our ex-
periments with the cluster structure fully explored (i.e. at least one
example of each class identified), in real data this may not be the
case—the total number of clusters may not be known during the ini-
tial exploration phase. Our method can dynamically add new clusters
as needed to adapt to such situations, while these (and most other)
active learning methods cannot.

2 Active constraint selection for semi-supervised
clustering

In this section, we first present the framework for our active semi-
supervised clustering, then describe details of each framework-
component and two novel node uncertainty models/definitions for
use in active constraint selection. Throughout the rest of the paper, let
X be a data set with n nodes, X = {z1,z2, - , 2z} and x; € R?
with k total clusters.

2.1 Active semi-supervised clustering framework

We now present our framework for active clustering—recall the ba-
sic flow of the algorithm depicted earlier in Figure 1. We divide
the whole framework into two parts: the exploration preprocess and
the online active selection/clustering process. We begin by running
the exploration preprocess once, before computing any clustering re-
sults. The goal is to obtain a set of exemplar nodes Q°, with (hope-
fully but not necessarily) at least one representing each true cluster.
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Figure 1. Flowchart of OCSNU for active clustering. First run the
exploration preprocess to obtain a set of exemplar nodes and associated pair
constraints, then input constraints to the online active constraint selection
and clustering process. Second, enter into the online cluster-select-query
loop, in which we repeatedly do semi-supervised clustering based on the
current constraints, then use the results of the clustering to actively select
new constraints and query the oracle. This process continues until either the
oracle is satisfied or a fixed number of queries have been made.

After this, the data and the initial Q° serve as inputs to the on-
line active clustering process. In each iteration of this process, our
approach will automatically select and query new pair constraints
based on the current clustering results and add the newly obtained
constraints into the current constraint set, then recluster using the
new constraint set. We iterate the online active clustering process un-
til the oracle is satisfied or a fixed number of queries have been made.

2.2 Exploration preprocess

In the exploration preprocess phase, we adopt the exploration process
from [2], which uses a farthest-first traversal strategy to query and
identify at least one node from each of the k clusters in a reasonably
small number of attempts. The identified nodes from the same cluster
are collected into a single node set, so there are at most k£ non-empty
node sets. [2] prove that this strategy yields a significant In k factor
improvement in the number of queries required to identify the needed
exemplars, as compared to random selection.

We denote the preprocessing as the 0" iteration in the online pro-
cess, and when it is finished we will have obtained kg node sets for
use, such that the set of node sets NS° = {Xi, Xa, -+, Xg, },
where each X; € NS° is a node set , and ko < k since preprocess-
ing could be stopped before k£ non-empty node sets are found. The
initial identified nodes set Q° = Uy, c ygo Xi-

Using these node sets, we then begin the active clustering process,
using the set of constraints represented in N.S° (i.e. must-link con-
straints among all nodes in the same set, and cannot-link constraints
among nodes in different sets) as input to an initial semi-supervised
clustering operation.

2.3 Online active constraint selection

After obtaining a set of output clusters from a semi-supervised clus-
tering algorithm, our method will then perform an active online

2 Note the set of node sets NSO will be updated after each iteration in the

online active clustering process. After the t*" iteration, the set of node sets
NS*—1 will be updated to NSt and Q* = Ux,enst Xi-



search for new constraints to further improve the clustering. As we
described earlier, at each iteration we identify the most uncertain
node in the dataset and query the relationship between this node and
some of the previously identified exemplars. We show here that the
most uncertain node is (given some relaxation), also the node that
will yield the maximum reduction in total node uncertainty for the
dataset when queried.

In the t*" iteration, Q'~' is the set of queried nodes, which
we consider to be “certain” (i.e. if we were clustering only these
nodes we could do so trivially and unambiguously) and X =
Q' U-Q' !, where ~Q" ™! is the set of unqueried nodes. We de-
fine the uncertainty U of the dataset in the t*” iteration to be condi-
tioned on the original data distribution and previous semi-supervised
clustering results, which are in turn based on the queried node set
Q'~". Thus the uncertainty can be expressed as U(-|M (X, C*™1)),
where C*~! is clustering result at iteration ¢ — 1 and M (-,-) is a
model for calculating uncertainty (we provide two such models here).

For a set of nodes X', denote U({X'}; M(X,C"™1))
Yeex U({mils M(X, C*™1)) if all nodes in X’ are condition-
ally independent under M(X,C*™'). Since queried nodes are
considered to be “certain” , we assume U(X; M(X,C*"1)) =
U(-Q'*; M(X,C'™1)), therefore our objective function for node
selection is as follows:

x; = argmax U(-Q" " M(X,C'™"))

J
X e-Qt—1

—U(@) T M(X, ()Y (1)

where (Q")'™' = Q"' |U{x;} and (C")"! is the clustering result
based on (Q")' L.

In order to solve Equation 1 and obtain node x;, we make two
assumptions: first, (C")"~* and C*~! are sufficiently similar that,

U(@) T MX(C) ™) = U@ MX,C7h) @

This assumption is reasonable because each iteration yields only a
small number of localized constraints, so we expect that generally
only a small subset of the clustering results is altered. The objective
function thus becomes:

U(-Q'™H M(X,C'7h) = U(=(Q) ™ M(X, (C')'1)
~  UEQTHM(X,CH) - U(R(@) T M(X,C') )
Second, similar to the strong naive Bayes assumption (which is over-
simplified but works quite well in many complex real-world situa-

tions) we assume node x; is conditionally independent of every other
node xj, for ¢ # k. Thus we can infer that:

U-Q™ S M(X,CHh) —U((@)  M(X,C' )
= Y U(mhM(X,C7Y) -
z;€-Qt—1 zpE-Qt—1

= U({z; s M(X,C"71) @
Therefore, the objective function can be approximated as:

x; = argmax U({z;}; M(X,C'™")) ®)

X c-Qt-1

So the problem is transferred into finding the most uncertain node
in the unqueried node set based on the current uncertainty model
M(X,C*™1). Next, we propose two definitions/models for node un-
certainty, which we can then use to actively select new nodes and as-
sociated pair constraints. These two models represent, respectively, a
local nonparametric and a global parametric view of uncertainty.

Local nonparametric structure model for node uncertainty.
Sparse graphs are a widely used and effective way to describe the
structure of data in many machine learning algorithms. Here we
adopt a JCNN graph to represent the entire dataset, with the local
structure of each node described by K edges.

Now define a ”good” edge in the JCNN graph as an edge between
two points in the same cluster. If the JCNN graph consists of all
“good” edges then the output of a clustering algorithm run on the
graph should match the CNN graph connectivity. Alternately, in a
graph with many “bad” edges (such as most graphs generated from
real data), the clustering result usually does not obey the JCNN graph
connectivity, and the graph will thus contain nodes whose neighbors
are assigned to different clusters. Thus, uncertain nodes should be
identifiable by the presence of “bad” edges linked to them.

Based on this observation, we define a local uncertainty model
based on the degree of cluster assignment disagreement between a
node and its neighbors. Thus, My (X, C*™') is based on the local
structure of the data in the feature space and the clustering result in
t — 1t" iteration. We calculate the uncertainty of a node X; using:

o #{CZ =¢j,z € N]}

U({x; s M(X,C"77)) =1 N, ,

(6

#{cz=c;j,zEN;}
#{N,;}
graph that are assigned to same cluster as node x; during clus-
tering (notation c, denotes the cluster index of neighbor z). If
U({x;}; M (X,C"1)) is high, the cluster relationship between
this node and its neighbors disagrees strongly with the local struc-

ture, so this node is highly uncertain.

We note that the distance measure and /C value used to compute
the NN graph do effect this uncertainty formulation, and serve as
inputs to the algorithm. In our experiments, we select the commonly
used Mahalanobis distance whose metric matrix is equal to the in-
verse covariance matrix of the data points, and K = 10.

Global parametric model for node uncertainty. Most semi-
supervised clustering methods learn a modified similarity kernel ma-
trix as part of the clustering algorithm. Here, we define a new repre-
sentation for the data by computing the k largest eigenvectors of the
modified kernel matrix and using them as the features in a new data
space. This functions similarly to the spectral eigenmap from input
dimensionality d to dimensionality k£ < d:

where is the ratio of neighbors of node j in the

6:x e R" > R™® - R" . (7

x; € RY — R is accomplished using the kernel trick (with the
kernel learned via semi-supervised clustering) to project the data
from the original feature space to an infinitely high dimensional

Z U({zn}; M(X, Ct—1?§)ace. In the high dimensional space, we assume data nodes lie on a

ow dimensional manifold and each cluster is represented by a Gaus-
sian.

Eigendecomposition then gives us R> — RF¥, projecting the data
from the high dimensional feature space back to a low dimensional
representation. We can consider this projection process a marginal-
ization over most of the infinite number of dimensions. In the ideal
case, this projection should retain the distribution of data nodes, each
cluster can thus be accurately represented in the low dimensional
space by a Gaussian, and the whole dataset can be represented by a
global Gaussian mixture model (GMM):

p(XiHaz}a {Mz}» {Ez}) = ZOCZN(Xi;ILLZ>ZZ) ) (8)

z=1



where {«.} are the mixing weights and ({p-}, {X.}) are the com-
ponent Gaussian parameters. Using EM, it is easy to estimate the pa-
rameters for the GMM and obtain the probability of each data point

given each cluster z: p(z|x;) = % We can then de-
BN (xisng 2,

fine an uncertainty model M¢ (X, C*~') based on the entropy of the
p(z|x;) distribution for a point, yielding an uncertainty measure:

k
U({x;}; Ma(X,C"71) = > pllx;) logp(zlx;) , (9

z=1

where C*~! implicitly determines this node uncertainty function via
the learned kernel matrix.

Querying pairs based on the selected node. After finding the
most uncertain node, we obtain pairs to query using the node sets
NS as follows.

First, for each node set X;, choose the single node within
the set which is closest to the selected node x;: x; =
argmin, ¢, Dist(x;,x;) and record this node and distance value.

Second, since there are k;_1 node sets, we will have recorded k1
nodes and distance values, so sort the nodes based on their corre-
sponding distances. Now, in order of ascending distance, query the
oracle on the relation between the selected node x; and x; until we
find a must-link connection, then add x; into the node set. If all of
the relations are cannot-link, we create a new node set X, ,+1 and
add x; to it. This new node set X, _, 11 is then added to NS*~! to
obtain N'S*, and Q'™ is correspondingly updated to Q*. Since the
relation between the new node and all node sets in N.S? is known,
we can generate new pairwise constraints between the selected node
x; and all nodes in Q.

2.4 Semi-supervised clustering

When new pairwise constraints are obtained, we add them to the orig-
inal constraint set. We then run the semi-supervised spectral cluster-
ing method on the new constraint set. There are a number of possible
candidate methods for semi-supervised clustering, here we choose
the two spectral clustering-based algorithms described below, due to
the power and generality of spectral methods.

Spectral Learning This method [14] is a simple, easily imple-
mented spectral learning algorithm, which applies the constraints di-
rectly. Given the set of pairwise constraints, the algorithm directly
modifies the affinity(similarity) matrix W, then performs spectral
clustering on the modified affinity matrix. Specifically, the new affin-
ity matrix is now defined as:

e For each pair of must-linked points (¢, j) assign the values W;; =
Wji =1.

e For each pair of cannot-linked points (¢, 7) assign the value W;; =
Wi = 0.

e Normalize N = d"}(w (W + dmazI — D), where dpmaq is the
maximum of summed rows of W, and I is the identity matrix.

The spectral clustering algorithm then proceeds normally.

Flexible Semi-supervised spectral clustering This method was
proposed by [22]. Rather than applying the constraints directly, this
method optimizes the following objective function:

argminu” Lu s.t. u” Du = Z Disu"Qu>a, (10

u€RN B

where L is the normalized graph Laplacian of the affinity matrix
and D is the diagonal degree matrix. It is easy to see that the dif-
ference from spectral clustering is the new term v” Qu > a. Q is

the constraint matrix such that Q);; = 1 for must-link, Q;; = —1 for
cannot-link and @;; = 0 for unknown pairs. « is the cluster assign-
ment vector. u” Qu can thus be considered as a measure of how well
the pairwise constraints conform to the cluster assignment u. Since
w € RY is a vector, the method is limited into two-cluster cases.

In our experiments, we apply OCSNU in conjunction with our
local nonparametric and global parametric uncertainty measures to
the above two semi-supervised clustering algorithms, and the results
show the superiority and generality of our methods.

3 Experiments
3.1 Dataset

We evaluate our proposed framework and uncertainty measures on
UCI machine learning, digits [1], gene (Cho’s [6] and image datasets.
The image data is a subset of the Caltech-101 [8], with images repre-
sented by image gist features (reduced to 100 dimensions via PCA).
More details in Table 1. All results are averaged over 30 runs.

Table 1. UCI Datasets, DIGITS, GENE and IMAGE Datasets

Name #Classes | #Instances | #Features
Balance 3 625 4
Bupa 2 345 6
Diab 2 768 8
Sonar 2 208 60
Wine 3 178 13
Semeion digits 10 1593 256
Multiple features digits 10 2000 649
[ Cho I 5 I 386 I 16 |
[ Caltech 5-Class I 5 I 307 I 100 |

3.2 Evaluation protocols

We evaluate all cluster solutions via two commonly used cluster eval-
uation metrics: Rand Index [18] and V-Measure [19].

Rand Index. To measure the performance, we first adopt the well-
known Rand Index, defined by:

Hl{ei = ¢} = H{é = ¢}}
Accuracy = Z n(n —1)2
1>7
where 1{-} is the indicator function that outputs 1 when the input is
true and O otherwise. ¢; and ¢; are the true cluster membership and
the predicted cluster membership of the ith data point, respectively.
n is the number of data points in the dataset.

V-Measure. We also employ the well-known V-Measure metric,
which defines entropy-based measures for the completeness and ho-
mogeneity of the clustering results, and computes the harmonic mean
of the two (in our case, we weight both measures equally). It is de-
fined as follow:

(1+B8)«xh=xc
(Bxh)+c

where h is homogeneity and c is completeness.

Vs = (1n

3.3 Baseline and state of the art methods

To evaluate our active clustering framework and the two different
selection strategies, we compare our method with the following set
of methods, including a baseline and multiple the state of the art>:

3 All selection algorithm code was downloaded from authors’ websites except
FFQS, which we reimplemented.
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Figure 2. Rand Index and V-measure accuracy (vertical axes) with increasing pair relation queries on UCI datasets using spectral learning. Best viewed in

color.

Random: a baseline in which constraints are randomly sampled
from the available pool.

FFQS [2]: this method uses the farthest-first strategy to explore
the data, then queries points randomly against the discovered node
sets.

ASC [21]: a pair-based method that queries pairs that will yield
the maximum reduction in expected pair value error. In the origi-
nal paper it is used in conjunction with flexible spectral clustering,
and thus only applicable to two-class problems, but the active se-
lection method itself can be applied to multiclass cases as well.
QUIRE [12]: this is binary-only active learning method that com-
putes node uncertainty based on the informativeness and represen-
tativeness of each node. We use our OCSNU framework to gener-
ate the requested node labels from pairwise queries.

pKNN+AL [13]: this is is a minmax-based multi-class active
learning method. Again, we use our OCSNU framework to trans-
late node label requests into pairwise constraint queries.

Global Parametric OCSNU: this is our proposed framework,
using our global parametric node uncertainty measure to select
nodes.

Local Nonparametric OCSNU: this is our proposed framework,
using our local nonparametric node uncertainty measure to select
nodes.

All the above methods select constraints and feed the queried pair
constraints to the two semi-supervised clustering methods we intro-
duced in Section 2.4.

3.4 Results

Results on UCI dataset. We compared on 5 different UCI datasets,
3 binary and 2 multiclass.

Figure 2 shows the accuracy of different active selection methods
with varying numbers of constraints when using spectral learning as
the semi-supervised clustering algorithm. The first row of the figure
shows V-measure values and the second Rand Index. Both metrics
yield the same conclusion: our two methods are competitive in the
two-cluster case and clearly superior for multicluster (wine and bal-
ance) problems. In particular, our local nonparametric uncertainty
method is the best or tied for best on all but the Diabetes dataset,
where it is beaten out by our global parametric method.

Figure 3 presents the results for various active selection methods
in conjunction with the flexible semi-supervised spectral clustering

method. As this is a binary clustering method, only 2-class datasets
are used. Local nonparametric OCSNU still achieves competitive re-
sults on the BUPA and diabetes sets, and is clearly the best on sonar,
though the global parametric uncertainty measure performs notice-
ably worse here. Interestingly, the different active selection methods
are all much closer to each other in performance with this clustering
method. For BUPA in particular, the choice of active method seems
to have little effect on the results.

Results on Gene, Digits, images datasets. Figure 4 shows Rand
Index and V-measure results for active clustering on the gene, image,
digits datasets. Local nonparametric OCSNU performs particularly
well here, most notably on the Caltech and Semeion datasets. We
note that the robustness of the local method among all data tested
may be partially attributable to the natural synergy between it and
KNN graph-based clustering methods, of which spectral clustering is
a prime example. By comparison, the global parametric uncertainty
measurement appears to be less robust, performing well on Caltech
and Cho, but very poorly on the digits data. This is likely due to that
fact that the parametric model underlying our global method may
itself be a poor fit for some datasets.

Also notable is that the multiple feature digits dataset is the only
case where the V-measure and Rand index metrics differ significantly
in their relative assessment of the different selection algorithms, with
V-measure scoring local OCSNU highest, and Rand index granting
the best result to FFQS.

4 Conclusion

In this paper, we have considered the problem of active constraint se-
lection for semi-supervised spectral clustering. Our paper makes two
primary contributions: first, we describe a powerful general frame-
work for online active semi-supervised clustering based on node un-
certainty; second, we propose two methods for actively sampling
constraints by transforming the pair-uncertainty problem into a node-
uncertainty problem. We test our online active framework and se-
lection criteria with two different semi-supervised clustering algo-
rithms, against a number of existing active selection methods (in-
cluding active clustering and active learning techniques), and find
our method to be the most effective and robust of those surveyed.

In the future we hope to explore new node selection criteria. In par-
ticular, we wish to examine the possibility of a nonparametric global
uncertainty measure, and of a compound uncertainty measure that
considers both local and global structure.
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