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ABSTRACT
Metric learning makes it plausible to learn semantically mean-
ingful distances for complex distributions of data using label
or pairwise constraint information. However, to date, most
metric learning methods are based on a single Mahalanobis
metric, which cannot handle heterogeneous data well. Those
that learn multiple metrics throughout the feature space
have demonstrated superior accuracy, but at a severe cost
to computational efficiency. Here, we adopt a new angle on
the metric learning problem and learn a single metric that
is able to implicitly adapt its distance function throughout
the feature space. This metric adaptation is accomplished
by using a random forest-based classifier to underpin the dis-
tance function and incorporate both absolute pairwise posi-
tion and standard relative position into the representation.
We have implemented and tested our method against state
of the art global and multi-metric methods on a variety of
data sets. Overall, the proposed method outperforms both
types of method in terms of accuracy (consistently ranked
first) and is an order of magnitude faster than state of the
art multi-metric methods (16x faster in the worst case).

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; I.5.1 [Computing Methodologies]: Pattern
Recognition—models

General Terms
Algorithms
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1. INTRODUCTION
Although the Euclidean distance is a simple and conve-

nient metric, it is often not an accurate representation of
the underlying shape of the data [11]. Such a representation
is crucial in many real-world applications [5,31], such as ob-
ject classification [10, 12], text document retrieval [16, 26],
data clustering [29] and face verification [8, 20], and meth-
ods that learn a distance metric from training data have
hence been widely studied in recent years. We present a
new angle on the metric learning problem based on random
forests [1,6] as the underlying distance representation.1 The
emphasis of our work is the capability to incorporate the
absolute position of point pairs in the input space without
requiring a separate metric per instance or exemplar. In do-
ing so, our method, called random forest distance (RFD), is
able to adapt to the underlying shape of the data by varying
the metric based on the position of sample pairs in the fea-
ture space while maintaining the efficiency of a single met-
ric. In some sense, our method achieves a middle-ground
between the two main classes of existing methods—single,
global distance functions and multi-metric sets of distance
functions—overcoming the limitations of both (see Figure 1
for an illustrative example). We next elaborate upon these
comparisons.

The metric learning literature has been dominated by
methods that learn a global Mahalanobis metric, with rep-
resentative methods [3,9,14,21,24,25,28,30]. In brief, given
a set of pairwise constraints (either by sampling from label
data, or collecting side information in the semi-supervised
case), indicating pairs of points that should or should not
be grouped (i.e., have small or large distance, respectively),
the goal is to find the appropriate linear transformation of
the data to best satisfy these constraints. One such method
[30] minimizes the distance between positively-linked points
subject to the constraint that negatively-linked points are
separated, but requires solving a computationaly expensive
semidefinite programming problem. Relevant Component

1An early version of this manuscript has been released on
arXiv, article id:1201.0610
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Figure 1: An example using a classic swiss roll data set comparing both global and position-specific
Mahalanobis-based methods with our proposed method, RFD. All methods, including the baseline Euclidean,
perform well at low K-values due to local linearity. However, as K increases and the global nonlinearity of
the data becomes important, the monolithic methods’ inability to incorporate position information causes
their performance to degrade until it is little better than chance. The position-specific ISD method performs
somewhat better, but even with a Mahalanobis matrix at every point it is unable to capture the globally
nonlinear relations between points. Our method, by comparison, shows no degradation as K increases. (3
classes, 900 samples, validated using K-nearest neighbor classification, with varying K)

Analysis (RCA) [3] learns a linear Mahalanobis transforma-
tion to satisfy a set of positive constraints. Discriminant
Component Analysis (DCA) [14] extends RCA by exploring
negative constraints. ITML [9] minimizes the LogDet di-
vergence under positive and negative linear constraints, and
LMNN [24, 28] learns a distance metric through the maxi-
mum margin framework. Nguyen et al. [21] formulate metric
learning as a quadratic semidefinite programming problem
with local neighborhood constraints and linear time com-
plexity in the original feature space. More recently, re-
searchers have begun developing fast algorithms that can
work in an online manner, such as POLA [23], MLCL [13]
and LEGO [15].

These global methods learn a single Mahalanobis metric
using the relative position of point pairs:

Dist (xi,xj) = (xi − xj)
TW(xi − xj) (1)

Although the resulting single metric is efficient, it is limited
in its capacity to capture the shape of complex data(see
Figure 1 as example). In contrast, a second class, called
multi-metric methods [11, 12, 29], distributes distance met-
rics throughout the input space; in the limit, they estimate a
distance metric per instance or exemplar, e.g. [11,12] for the
case of Mahalanobis metrics. Zhan et al. [32] extend [11] by
propagating metrics learned on training exemplars to learn
a metric matrix for each unlabeled point as well. However,
these point-based multi-metric methods all suffer from high
time and space complexity due to the need to learn and
store O(N) d by d metric matrices. Wu et al. [29] learns a
Bregman distance function which does not need to store the
metric matrices for each data points, but it needs to take
O(N) time to calculate the distance of single pair of points
which is impractical for large scale data sets. A more effi-
cient approach to this second class is to divide the data into
subsets and learn a metric for each subset [2,27]. However,
these methods have strong assumptions in generating these
subsets; for example, [2] learns at most one metric per cate-
gory, forfeiting the possibility that different samples within
a category may require different metrics.

We propose a metric learning method that is able to achieve
both the efficiency of the global methods and specificity of
the multi-metric methods. Our method, the random for-
est distance (RFD), transforms the metric learning problem
into a binary classification problem and uses random forests
as the underlying representation [1, 4, 6, 17]. In this general
form, we are able to incorporate the position of samples im-
plicitly into the metric and yet maintain a single and efficient
global metric. To that end, we use a novel point-pair map-
ping function that encodes both the position of the points
relative to each other and their absolute position within the
feature space. Our experimental analyses demonstrate the
importance of incorporating position information into the
metric (Section 3).

We use the random forest as the underlying representa-
tion for several reasons. First, the output of the random
forest algorithm is a simple “yes” or “no” vote from each tree
in the forest. In our case, “no” votes correspond to posi-
tively constrained training data, and “yes” votes correspond
to negatively constrained training data. The number of yes
votes, then, is effectively a distance function, representing
the relative resemblance of a point pair to pairs that are
known to be dissimilar versus pairs that are known to be
similar. Second, random forests are efficient and scale well,
and have been shown to be one of the most powerful and
scalable supervised methods for handling high-dimensional
data [7]—in contrast to instance-specific multi-metric meth-
ods [11, 12], the storage requirement of our method is in-
dependent of the size of the input data set. Our experi-
mental results indicate RFD is at least 16 times faster than
the state of the art multi-metric method. Third, because
random forests are non-parametric, they make minimal as-
sumptions about the shape and patterning of the data [6],
affording a flexible model that is inherently nonlinear. In
the next section, we describe the new RFD method in more
detail, followed by a thorough comparison to the state of the
art in Section 3.



2. RANDOMFORESTDISTANCE: IMPLIC-
ITLY POSITION-DEPENDENTMETRIC
LEARNING

Our random forest-based approach is inspired by several
other recent advances in metric learning [2,23] that reformu-
late the metric learning problem into a classification prob-
lem. However, where these approaches restricted the form
of the learned distance function to a Mahalanobis matrix,
thus precluding the use of position information, we adopt a
more general formulation of the classification problem that
removes this restriction.

Given the instance set X = {x1,x2, · · · ,xN}, each xi ∈
Rm is a vector of m features. Taking a geometric inter-
pretation of each xi, we consider xi the position of sample
i in the space Rm. The value of this interpretation will
become clear throughout the paper as the learned metric
will implicitly vary over Rm, which allows it to adapt the
learned metric based on local structure in a manner similar
to the instance-specific multi-metric methods, e.g., [11]. De-
note two pairwise constraint sets: a must-link constraint set
S = {(xi,xj)|xi and xj are similar} and a cannot-link con-
straint set D = {(xi,xj)|xi and xj are dissimilar}. For any
constraint (xi,xj), denote yij as the ideal distance between
xi and xj . If (xi,xj) ∈ S, then the distance yij = 0, other-
wise, their distance yij = 1. Therefore, we seek a function
Dist (·, ·) from an appropriate function space H :

Dist (·, ·)∗ = (2)

argmin
Dist (·,·)∈H

1

|S ∪ D|
X

(xi,xj )∈S∪D

l(Dist (xi,xj), yij) ,

where l(·) is some loss function that will be specified by
the specific classifier chosen. In our random forests case,
we minimize expected loss, as in many classification prob-
lems. So consider Dist (·, ·) to be a binary classifier for the
classes 0 and 1. For flexibility, we redefine the problem as
Dist (xi,xj) = F (φ(xi,xj)), where F (·) is some classifica-
tion model, and φ(xi, xj) is a mapping function that maps
the pair (xi,xj) to a feature vector that will serve as input
for the classifier function F . To train F , we transform each
constraint pair using the mapping function {(xi, xj), yij} →
{φ(xi,xj), yij} and submit the resulting set of vectors and
labels as training data. We next describe the feature map-
ping function φ.

2.1 Mapping function for implicitly position-
dependent metric learning

In actuality, all metric learning methods implicitly employ
a mapping function φ(xi, xj). Standard Mahalanobis-based
methods all learn a (positive semidefinite) metric matrix W,
and a distance function of the form Dist (xi,xj) = (xi −
xj)

TW(xi−xj), which can be reformulated as Dist (xi,xj) =
�[W]T�[(xi − xj)(xi − xj)

T], where �[·] denotes vectorization
or flattening of a matrix. Mahalanobis-based methods can
thus be viewed as using the mapping function φ(xi,xj) =
�[(xi − xj)(xi − xj)

T]. This function encodes only relative
position information, and adapting it to include absolute
position information yields significant theoretical problems
for Mahalanobis methods based on global weights (see Sec-
tion 2.2).

However, our formulation affords a more general mapping

function:

φ(xi,xj) =

»
u(xi, xj)
v(xi,xj)

–
=

» |xi − xj |
1
2

(xi + xj)

–
, (3)

which considers both the relative location of the samples
u as well as their absolute position v. The output feature
vector is the concatenation of these two and in R2m.

The relative location u represents the same information as
the Mahalanobis mapping function. Note that we take the
absolute value of u to enforce symmetry within the learned
metric. The primary difference between our mapping func-
tion and that of previous methods is thus the information
contained in v—the mean of the two point vectors. These
features localize each mapped pair to a region of the space,
which allows our method to adapt to heterogeneous distri-
butions of data. It is for this reason that we consider our
learned metric to be implicitly position-dependent. Note the
earlier methods that learn position-based metrics, i.e. the
methods that learn a metric per instance such as [11], in-
corporate absolute position of each instance only, whereas
we incorporate the absolute position of each instance pair,
which adds additional modeling versatility.

We note that alternate encodings of the position informa-
tion are possible but have shortcomings. For example, we
could choose to simply concatenate the position of the two
points rather than average them, but this approach raises

the issue of ordering the points. Using v =
ˆ
xT

i xT
j

˜T

would again yield a nonsymmetric feature, and an arbitrary
ordering rule would not guarantee meaningful feature com-
parisons. The usefulness of position information varies de-
pending on the data set. For data that is largely linear and
homogenous, including v will only add noise to the features,
and could worsen the accuracy. In our experiments, we find
that for many real data sets (and particularly for more dif-
ficult data sets) the inclusion of v significantly improves the
performance of the metric (see Section 3).

2.2 Why not Mahalanobis?
Before investigating the use of wholly new metric rep-

resentations, it is reasonable to consider the use of abso-
lute position information in a traditional Mahalanobis or
Mahalanobis-like metric based on global weights. Here we
show that such a formulation has immediate theoretical short-
comings.

Assume there exists a Mahalanobis metric M > 0 utiliz-
ing our position-embedded mapping function. Consider that

M =

»
Muu Muv

Mvu Mvv

–
. Since M > 0, we know Muu > 0 and

Mvv > 0.
Now, for any two points xi and xj such that xi = k ·

xj where k is a scalar, let us build two pairs (xi,xi) and
(xj ,xj). Obviously the distance between each of these point
pairs should be small, so the difference between these two
distances should also be small:

Dist(xi, xi) − Dist(xj ,xj) =

»
u(xi,xi)
v(xi, xi)

–T

· M ·
»
u(xi,xi)
v(xi, xi)

–

−
»
u(xj , xj)
v(xj ,xj)

–T

· M ·
»
u(xj ,xj)
v(xj ,xj)

–

Since u(xi, xi) = u(xj ,xj) = 0,



Table 1: UCI data sets used for KNN-classification testing
Dataset Size Dim. No. Classes Dataset Size Dim. No. Classes

Balance 625 4 3 Iris 150 4 3
BUPA Liver Disorders 345 6 2 Pima Indians Diabetes 768 8 2
Breast Cancer 699 10 2 Wine 178 13 3
Image Segmentation 2310 19 7 Sonar 208 60 2

Semeion Handwritten Digits 1593 256 10
Multiple Features
Handwritten Digits

2000 649 10

Dist(xi,xi) − Dist(xj , xj) = v(xi, xi)
T Mvvv(xi,xi)

−v(xj ,xj)
T Mvvv(xj ,xj)

Since xi = k · xj ,

Dist(xi,xi) − Dist(xj , xj) =(k2 − 1)(v(xj ,xj))
T Mvv(v(xj ,xj))

Thus, as k → +∞, Dist(xi,xi) − Dist(xj ,xj) → +∞.
This is a nonsensical result, and clearly undesirable in a met-

ric. For this reason, traditional Mahalanobis formulations based
on global covariance weights are not suitable for use with our
position-sensitive mapping function, and we thus pursue alterna-
tive distance representations.

2.3 Random forests for metric learning
Random forests are well studied in the machine learning liter-

ature and we do not describe them in any detail; the interested
reader is directed to [1, 6]. In brief, a random forest is a set of
T decision trees {ft}T

t=1 operating on a common feature space,

in our case R2m. To evaluate a point-pair (xi,xj), each tree
independently classifies the sample (based on the leaf node at
which the point-pair arrives) as similar or dissimilar (0 or 1, re-
spectively) and the forest averages them, essentially regressing a
distance measure on the point-pair:

Dist(xi,xj) = F (φ(xi,xj)) =
1

T

TX
t=1

ft(φ(xi,xj)) , (4)

where ft(·) is the classification output of tree t.
It has been found empirically that random forests scale well

with increasing dimensionality, compared with other classifica-
tion methods [7], and, as a decision tree-based method, they are
inherently nonlinear. Hence, our use of them in RFD as a re-
gression algorithm allows for a more scalable and more flexible
metric than is possible using Mahalanobis methods. Moreover,
the incorporation of position information into this classification
function (as described in Section 2.1) allows the metric to implic-
itly adapt to different regions over the feature space. In other
words, when a decision tree in the random forest selects a node
split based on a value of the absolute position v sub-vector (see
Eq. 3), then all evaluation in the sub-tree is localized to a spe-
cific half-space of Rm. Subsequent splits on elements of v further
refine the sub-space of emphasis Rm. Indeed, each path through
a decision tree in the random forest is localized to a particular
(possibly overlapping) sub-space.

The RFD is not technically a metric but rather a pseudosemi-
metric. Although RFD can easily be shown to be non-negative
and symmetric, it does not satisfy the triangle inequality (i.e.,
Dist(x1,x2) ≤ Dist(x1, x3)+Dist(x2, x3)) or the implication that
Dist(x1,x2) = 0 =⇒ x1 = x2, sometimes called identity of in-
discernibles. It is straightforward to construct examples for both
of these cases. Although this point may appear problematic, it
is not uncommon in the metric learning literature. For exam-
ple, by necessity, no metric whose distance function varies across

the feature space can guarantee the triangle inequality is satis-
fied. [11, 12] similarly cannot satisfy the triangle inequality. Our
method must violate the triangle inequality in order to fulfill our
original objective of producing a metric that incorporates position
data. Moreover, our extensive experimental results demonstrate
the capability of RFD as a distance (Section 3).

2.4 Theoretic analysis of RFD performance
For simplicity, we assume that the classes of must-link and

cannot-link are balanced |S| == |D|. For the case of a single
random decision tree, we suppose each leaf has a true probabilistic
margin γ with a total of C training pairs that reach the leaf
during the training process. Thus, a fraction 1

2
+ γ of C training

pairs belongs to one class (e.g. must-link pair constraints), and

a fraction 1
2
− γ of them belong to the other class (e.g. cannot-

link pair constraints). We denote a leaf as a must-link leaf if
a majority of the training pairs in the leaf are must-link, and
likewise denote it a cannot-link leaf if the majority of pairs are
cannot-link. According to [19], it is straightforward to show that
the probability that must-link pair will end up in a must-link leaf
during testing is 1

2
+ γ, and similarly for cannot-link pairs.

For the purposes of establishing error bounds, we can relax
RFD to a binary classification algorithm that discriminates be-
tween must-link and cannot-link pairs. We do this by employing
an evidence voting [22] procedure, wherein we drop a test pair
through the T learned random decision trees and take the mode
of the C · T training pairs stored in the leaves reached by the
testing pair as a classification result. Given this setup, we can
establish an upper bound on pair classification error in RFD:

Proposition 1. The probability of pair classification error in
RFD P (ε)RF D is ≤ exp(−8CTγ4).

Proof. Details in [22].

Computational complexity Since all trees are generated in-
dependently, we can build these trees in parallel. Thus the major
computational cost for our method is the generation of single
tree based on training data. For building single tree, it takes
O(n log n) time. And the learning processes of nodes from the
same depth of one tree are also independent, so we can use the
parallel computing technique for learning the nodes of same depth
of tree to make our method more efficient.

3. EXPERIMENTS AND ANALYSIS
In this section, we present a set of experiments comparing our

method to state of the art metric learning techniques on both a
range of UCI data sets (Table 1) and an image data set taken
from the Corel database. To substantiate our claim of computa-
tional efficiency, we also provide an analysis of running time effi-
ciency relative to an existing position-dependent metric learning
method. We also include results illustrating the effect of varying
forest sizes on our algorithm’s accuracy.

For the UCI data sets, we compare performance at the K-
nearest neighbor classification task against both standard Maha-
lanobis methods and point-based position-dependent methods.2

2We note that previous work has established a connection
between random forests and nearest neighbor analysis [18],
but this relationship does not apply to RFD. In RFD, the
“points” within the forest are actually point pairs, and thus



For the former, we test K-NN classification accuracy at a range
of K-values (as in Figure 1), while the latter relies on results
published by other methods’ authors, and thus uses a fixed K.
For the image data set, we measure accuracy at K-NN retrieval,
rather than K-NN classification. We compare our results to sev-
eral Mahalanobis methods.

The following is an overview of the primary experimental find-
ings to be covered in the following sections.

1. RFD has the best overall performance on ten UCI data
sets ranging from 4 to 649 dimensions against four state of
the art and two baseline global Mahalanobis-based methods
(Figure 2 and Table 2).

2. RFD has comparable or superior accuracy to state of the
art position-specific methods (Table 3).

3. RFD is 16 to 85 times faster than the state of the art
position-specific method (Table 4).

4. RFD outperforms the state of the art in nine out of ten
categories in the benchmark Corel image retrieval problem
(Figure 4).

3.1 Comparison with globalMahalanobismet-
ric learning methods

We first compare our method to a set of state of the art Maha-
lanobis metric learning methods: RCA [3], DCA [14], Information-
Theoretic Metric Learning (ITML) [9] and distance metric learn-
ing for large-margin nearest neighbor classification (LMNN) [24,
28]. For our method, we test using the full feature mapping in-
cluding relative position data, u, and absolute pairwise position
data, v, (RFD (+P)) as well as with only relative position data,
u, (RFD (−P)). To provide a baseline, we also show results using
both the Euclidean distance and a heuristic Mahalanobis metric,
where the W used is simply the covariance matrix for the data.
All algorithm code was obtained from authors’ websites, for which
we are indebted (our code is available, as well).

We test each algorithm on a number of standard small to
medium scale UCI data sets (see Table 1). All algorithms are
trained using 1000 positive and 1000 negative constraints per
class, with the exceptions of RCA, which used only the 1000 pos-
itive constraints and LMNN, which used the full label set to ac-
tively select a (generally much larger) set of constraints. In each
case, we set the number of trees used by our method to 400 (see
Section 3.2 for a discussion of the effect of varying forest sizes).

Testing is performed using 5-fold cross validation on the K
nearest-neighbor classification task. In each fold, metric con-
straints, as well as neighbors used for classification, are drawn
only from the training data. Rather than selecting a single K-
value for this task, we test with varying Ks, increasing in incre-
ments of 5 up to the maximum possible value for each data set
(i.e. the number of elements in the smallest class). By varying K
in this way, we are able to gain some insight into each method’s
ability to capture the global variation in a data set. When K
is small, most of the identified neighbors lie within a small lo-
cal region surrounding the query point, enabling linear metrics to
perform fairly well even on globally nonlinear data by taking ad-
vantage of local linearity. However, as K increases, local linearity
becomes less practical, and the quality of the metric’s represen-
tation of the global structure of the data is exposed. Though
the accuracy results at higher K values do not have strong impli-
cations for each method’s efficacy for the specific task of K-NN
classification (where an ideal K value can just be selected by cross-
validation), they do indicate overall metric performance, and are
highly relevant to other tasks, such as retrieval.

Figure 2 shows the accuracy plots for ten UCI datasets. RFD
is consistently near the top performers on these various data sets.
In the lower dimension case (Iris), most methods perform well,
and RFD without position information outperforms RFD with
position information (this is the sole data set in which this oc-
curs), which we attribute to the limited data set size (150 samples)

potential nearest neighbors identified via the forest would
represent similar pair constraints, rather than similar data
elements.

and the position information acting as a distractor in this small
and highly linear case. In all other cases, the RFD with abso-
lute position information significantly outperforms RFD without
it. In many of the more difficult cases (Diabetes, Segmentation,
Sonar), RFD with position information significantly outperforms
the field. This result is suggestive that RFD can scale well with
increasing dimensionality, which is consistent with the findings
from the literature that random forests are one of the most ro-
bust classification methods for high-dimensional data [7].

Table 2 provides a summary statistic of the methods by com-
puting the mean-rank (lower better) over the ten data sets at
varying K-values. For all but one value of K, RFD with absolute
position information has the best mean rank of all the methods
(and for the off-case, it is ranked second). RFD without absolute
position information performs comparatively poorer, underscor-
ing the utility of the absolute position information. In summary,
the results in Table 2 show that RFD is consistently able to out-
perform the state of the art in global metric learning methods on
various benchmark problems.

3.2 Varying forest size
One question that must be addressed when using RFD is how

many trees must or should be learned in order to obtain good
performance. Increasing the size of the forest increases computa-
tion and space requirements, and past a certain point yields little
or no improvement and may possibly over-train. It is beyond the
scope of this paper to provide a full answer as to how many trees
are needed in RFD, but we have made some observations.

First, the addition of absolute position information noticeably
increases the benefit that may be obtained from additional trees
(see Figure 3). This result is unsurprising, considering the in-
creased size of the feature vector, as well as the increased de-
gree of fine-tuning possible for a metric that can vary from re-
gion to region. Second, in our experiments we observe significant
improvements in accuracy up to about 100 trees, even without
position information, and would recommend this as a reasonable
minimum value. Intuition suggests that larger constraint-sets and
more complex data distributions may require larger forests, but
these two points have not yet been thoroughly explored by our
group.

3.3 Comparison with position-specific multi-
metric methods

We compare our method to three multi-metric methods that in-
corporate absolute position (by way of instance-specific metrics):
FSM, FSSM and ISD. FSM [11] learns an instance-specific dis-
tance for each labeled example. FSSM [12] is an extension of FSM
that enforces global consistency and comparability among the dif-
ferent instance-specific metrics. ISD [32] first learns instance-
specific distance metrics for each labeled data point, then uses
metric propagation to generate instance-specific metrics for unla-
beled points as well.

We again use the ten UCI data sets, but under the same con-
ditions used by these methods’ authors. Accuracy is measured
on the K-NN task (K=11) with three-fold cross validation. The
parameters of the compared methods are set as suggested in [32].
Our RFD method chooses 1% of the available positive constraints
and 1% of the available negative constraints, and constructs a ran-
dom forest with 1000 trees. We report the average result of ten
different runs on each data set, with random partitions of train-
ing/testing data generated each time (see Table 3). These re-
sults show that our RFD method yields performance better than
or comparable to state of the art explicit multi-metric learning
methods. Additionally, because we only learn one distance func-
tion and random forests are an inherently efficient technique, our
method offers significantly better computational efficiency than
these instance-specific approaches (see Table 4)—between 16 to
85 times faster than ISD.

The comparable level of accuracy is not surprising. While our
method is a single metric in form, in practice its implicit position-
dependence allows it to act like a multi-metric system. Notably,
because our method learns using the position of each point-pair
rather than each point, it can potentially encode up to n2 implicit



Figure 2: K-nearest neighbor classification results with varying K values of RFD versus assorted global Ma-
halanobis methods on 10 UCI data sets . Plots show K-nearest neighbor K-value versus accuracy. Note in
particular the segmentation and breast datasets, where RFD shows little or no degradation over increasing
distances, while other methods steadily decline in accuracy. Also note that the inclusion of position infor-
mation in the RFD yields higher performance on all but the low-dimensional and highly linear iris dataset.



Table 2: Mean K-nearest neighbor classification accuracy ranking on 10 UCI data sets at varying K values
(lower rank is better). The mean ranking is shown in each table cell as well as the corresponding overall
rank, in parentheses. As expected, Euclidean distance nearly always has the worst rank. RFD with absolute
position information attains the best rank in nearly all cases, and the relative performance of both RFD
methods improves as K increases.

k-value Euclid Mahal RCA DCA ITML LMNN RFD (−P) RFD (+P)

5 5.8 (8) 5.7 (7) 4.3 (4) 4.8 (5) 3.9 (3) 3.2 (2) 5.4 (6) 2.9 (1)
10 6.1 (8) 5.6 (7) 3.7 (3) 4.6 (4) 4.8 (5) 2.9 (1) 5.1 (6) 3.2 (2)
15 5.7 (8) 5.4 (6) 3.9 (3) 4.7 (5) 5.6 (7) 3.1 (2) 4.6 (4) 3 (1)
20 5.6 (8) 5.4 (7) 3.8 (3) 5.2 (5) 5.3 (6) 3.7 (2) 4.5 (4) 2.5 (1)
25 6.1 (8) 5.3 (6) 4 (3) 4.5 (4) 5.4 (7) 3.4 (2) 4.8 (5) 2.5 (1)
30 5.8 (7) 5.9 (8) 4.5 (5) 4.3 (3) 5.3 (6) 3.5 (2) 4.3 (3) 2.4 (1)
35 5.8 (8) 5.4 (6) 4.3 (4) 4.9 (5) 5.5 (7) 4 (3) 3.8 (2) 2.3 (1)
45 6.6 (8) 5.5 (6) 4.4 (4) 4.4 (4) 5.9 (7) 3.3 (2) 4.1 (3) 1.8 (1)
Max 6.5 (8) 6.1 (7) 5.1 (5) 3.7 (3) 5.5 (6) 3.7 (3) 3.5 (2) 1.9 (1)

position-specific metrics, rather than the O(n) learned by exist-
ing position-dependent methods, which learn a single metric per
instance/position. RFD is a stronger way to learn a position-
dependent metric, because even explicit multi-metric methods
will fail over global distances in cases where a single (Maha-
lanobis) metric cannot capture the relationship between its as-
sociated point and every other point in the data.

Table 3: Comparison of test error (mean ± STD) for
position-dependent metric learning methods. The
best performance on each data set is shown in bold.
We note that our method yields the best accuracy
on 3 out of 5 data sets tested, and is within 1% of
the best on the remaining 2.

Dataset RFD ISD L1 ISD L2 FSM FSSM

Balance .120±.024 .114±.013 .116±.014 0.134±.020 0.143±.013
Diabetes .241±.028 .287±.019 .269±.023 .342±.050 .322±.232
Breast(Scaled) .030±.011 .0.31±.010 .030±.010 .102±.041 .112±.029
German .277±.039 .277±.015 .274±.013 .275±.021 0.275±.060
Haberman .273±.029 .277±.029 .273±.025 .276±.032 .276±.029

Table 4: Run-time comparison of ISD and RFD
(with position information, using 1000 trees) across
several UCI data sets. All times are in seconds. Re-
sults were obtained by performing 5-fold cross vali-
dation and averaging the time for each fold. ∗Note
that ISD is multithreading across 12 cores, while our
implementation of RFD is fully sequential.

Dataset ISD Time∗ RFD Time ISD:RFD Ratio

Iris 34.6 2.1 16.4
Balance 620.3 11.2 55.3
Breast (scaled) 657.4 7.8 84.6
Diabetes 849.5 14.7 57.8

3.4 Retrieval on the Corel image data set
We also evaluate our method’s performance on the challenging

image retrieval task because this task differs from K-NN classi-
fication by emphasizing the accuracy of individual pairwise dis-
tances rather than broad patterns. For this task, we use an image
data set taken from the Corel image database. We select ten im-
age categories of varying types (cats, roses, mountains, etc.—the

classes and images are similar to those used by Hoi et al. to vali-
date DCA [14]), each with a clear semantic meaning. Each class
contains 100 images, for a total of 1000 images in the data set.

For each image, we extract a 36-dimensional low-level feature
vector comprising color, shape and texture. For color, we extract
mean, variance and skewness in each HSV color channel, and thus
obtain 9 color features. For shape, we employ a Canny edge de-
tector and construct an 18-dimensional edge direction histogram
for the image. For texture, we apply Discrete Wavelet Transfor-
mation (DWT) to graylevel versions of original RGB images. A
Daubechies-4 wavelet filter is applied to perform 3-level decom-
position, and mean, variance and mode of each of the 3 levels are
extracted as a 9-dimensional texture feature.

We compare three state of the art algorithms and a Euclidean
distance baseline: ITML, DCA, and our RFD method (with ab-
solute position information). Since retrieval problem is different
from classification problem, there is no label for each point, only
have labels for pairs such as must-link or cannot-link. But in the
training process of LMNN, it needs the class label for each train-
ing points. Therefore we did not use the LMNN in the retrieval
experiments.

For ITML, we vary the parameter γ from 10−4 to 104 and
choose the best (10−3). For each method, we generate 1% of
the available positive constraints and 1% of the available nega-
tive constraints (as proposed in [14]). For RFD, we construct a
random forest with 1500 trees. Using five-fold cross validation,
we retrieve the 20 nearest neighbors of each image under each
metric. Accuracy is determined by counting the fraction of the
retrieved images that are the same class as the image that re-
trieved them. We repeat this experiment 10 times with differing
random folds and report the average results in Figure 4. RFD
clearly outperforms the other methods tested, achieving the best
accuracy on all but the cougar category. Also note that ITML
performs roughly on par with or worse than the baseline on 7
classes, and DCA on 5, while RFD fails only on 1, indicating
again that RFD provides a better global distance measure than
current state of the art approaches, and is less likely to sacrifice
performance in one region in order to gain it in another.

4. CONCLUSION
In this paper, we have proposed a new angle on the metric

learning problem utilizing random forests. Our method, called
random forest distance (RFD), incorporates conventional rela-
tive position information as well as absolute position of point
pairs into the learned metric, and hence implicitly adapts the
positon-based metric through the feature space. Our evaluation
has demonstrated the capability of RFD, which attains the best
overall performance in terms of accuracy and speed on a variety
of benchmarks.

There are immediate directions of further inquiry that have
been paved with this paper. First, RFD further demonstrates



Figure 3: Effect of forest size on RFD performance on the UCI diabetes data set. Results were obtained by
averaging results from 10 runs, each using 5-fold cross validation. Both with and without position information,
increasing forest size yields notable improvements in accuracy up to about 100 trees. If no position information
is included, then additional trees beyond this point provide modest gains at best. With position information,
larger forests do appear to allow more fine-tuning, and can produce noticable improvements up to at least
500 trees.

Figure 4: Average retrieval precision on top 20 nearest neighbors of images in the Corel data set. RFD
outperforms DCA, ITML and the baseline Euclidean measure on all but one category.

the capability of classification methods as a foundation for metric
learning. Similar feature mapping functions and other underlying
forms for the distance function need to be investigated. Second,
the usefulness of absolute pairwise position information is clear
from our work—a good indication of the need for multiple metrics.
Open questions remain about other representations for position
information as well as the use of position in other metric forms.

We are also investigating the use of RFD on larger-scale, more
diverse data sets like the MIT SUN image classification data set.
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