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Abstract

To improve robustness to significant mismatches between
source domain and target domain - arising from changes such
as illumination, pose and image quality - domain adaptation
is increasingly popular in computer vision. But most of meth-
ods assume that the source data is from single domain, or that
multi-domain datasets provide the domain label for training
instances. In practice, most datasets are mixtures of multiple
latent domains, and difficult to manually provide the domain
label of each data point. In this paper, we propose a model
that automatically discovers latent domains in visual datasets.
We first assume the visual images are sampled from mul-
tiple manifolds, each of which represents different domain,
and which are represented by different subspaces. Using the
neighborhood structure estimated from images belonging to
the same category, we approximate the local linear invariant
subspace for each image based on its local structure, elim-
inating the category-specific elements of the feature. Based
on the effectiveness of this representation, we then propose a
squared-loss mutual information based clustering model with
category distribution prior in each domain to infer the do-
main assignment for images. In experiment, we test our ap-
proach on two common image datasets, the results show that
our method outperforms the existing state-of-the-art methods,
and also show the superiority of multiple latent domain dis-
covery.

Introduction

Despite significant improvements in machine learning mod-
els, and the development of visual features invariant to a
wider range of nuisance variation (in pose, etc.), learning-
based vision systems still have limited generalizability.
When trained using labeled data from a source domain,
which is not sufficiently representative of the test data, dif-
ferences in computed features arising from changing image
quality, photo realism, or background content (Liu et al.
2011; Alessandro Bergamo 2010) will drive down the per-
formance of learned models.

In order to address this issue, various domain adaptation
methods (Shimodaira 2000; Sun et al. 2011; Pan et al. 2011;
Kulis, Saenko, and Darrell 2011; Glorot, Bordes, and Ben-
gio 2011) have been advanced in recent years. These meth-
ods improve generalization by learning how features from

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Shao-Hang Hsieh
SUNY at Buffalo
shaohang @buffalo.edu

Jason J. Corso
SUNY at Buffalo
jeorso@buffalo.edu

the source domain relate to features in the target domain, in
which we hope to apply a learned model. Certain datasets
have also been shown to generalize better to an unlabeled
target domain, providing a mean for unsupervised domain
adaptation. In other cases, a small amount of labeled data in
the target domain may be used for semi-supervised domain
adaptation (Xiao and Guo 2012).

While successes in improving the generalization perfor-
mance between different source and target domains, these
methods don’t quite solve the “in the wild” recognition
problem. In order to provide better performance on uncon-
strained test sets, e.g. web images, it is natural to train object
recognition models using labeled data from the web. In this
case, though, the training data no longer resides in a single
domain; web images may be drawings or real camera images
of varying quality and pose. Most domain adaptation meth-
ods fail to account for this, and implicitly assume that the
training data is self-consistent or that domain labels are pro-
vided (Duan et al. 2009; Chattopadhyay et al. 2012). Gong
et al. (Gong et al. 2012), for instance, improve generaliza-
tion performance between self-consistent domains contain-
ing high-quality commercial images or low-quality webcam
images, but assume that it is known in advance the domain
to which a given training and test image belongs. This will
be useful when images come from the same generative pro-
cess, e.g. a network of similar surveillance cameras, but will
not perform as well on random images drawn from the web.

In order to address this, we propose a novel model to
explicitly estimate the domain associated with each train-
ing image from the web. First, we design a new represen-
tation for latent domain modeling, which is based on the
same intuition as used by Gong et al. (Gong et al. 2012),
namely that the visual features reside in a low-dimensional
subspace within the larger feature space. As such, we esti-
mate the manifold structure of the different domains, as out-
lined in the following sections. First, using its neighboring
points within the same semantic category, we infer a novel
descriptor for each image that represents the local invariant
subspace of the domain-related feature at the original feature
point. This subspace could be low-rank. Then, we propose a
regularized square-loss mutual information based clustering
method that incorporate the prior of category distribution of
images within each domain.

In our experiments, we demonstrate both improved do-
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Figure 1: A toy example comparing different methods for latent domain discovery. The example data are 3-dimensional features
that represent 3 categories (different shapes) and 2 domains (different color). Consistent with our intuition that features from
the same domain reside on a manifold, each of our toy domains is 2-dimensional subspaces. Our method performs better than
other methods like k-means and Hoffman et al. (Hoffman et al. 2012) because we do not assume a specific distribution shape

of the domain within the feature space. Best viewed in color.

main discovery relative to (Hoffman et al. 2012) (using the
office dataset from (Saenko et al. 2010)) and the necessity of
domain discovery for domain adaptation in the wild (using
the Bing-Caltech 256 dataset (Alessandro Bergamo 2010)).

Related Works

The closest work to ours is the method of Hoffman et al.
(Hoffman et al. 2012), which estimate the membership of
training data in multiple latent domains using an iterative
approach. Initial clusters in the feature space are assumed
to arrange the data by both domains and object category,
and domains are estimated by further grouping these clus-
ters subject to the constraint that no two clusters for the
same object category are combined. These steps are iterated
until convergence, but performance may be adversely im-
pacted by a poor initial clustering based on our experience
with their code. Algorithmically, the key difference is that,
whereas Hoffman et al. model domains as a Gaussian distri-
bution in the feature space, our method models the domain
as a manifold embedded in the feature space without any as-
sumptions about its distribution. Figure 1 demonstrates the
benefit of this generality on a toy example of 3 categories
(marker shapes) from 2 domains (colors), where our method
provides a better domain assignment than either k-means or
Hoffman et al.’s method (Hoffman et al. 2012).

The modeling of domains as manifolds within a larger
feature space has been demonstrated in previous work where
domain adaptation is applied to a monolithic test domain, or
to a test set with given domain labels (Gong et al. 2012;
Gopalan, Li, and Chellappa 2011; Jhuo et al. 2012). While
not manifold-based, Kulis et al. (Kulis, Saenko, and Darrell
2011) proposed to use category constraints to learn an asym-
metric non-linear transform for adaptation between mono-
lithic domains, which Hoffman et al. (Hoffman et al. 2012)
extended to multi-domain settings.

Several papers have addressed the related problem of

training classifier models from training data spanning mul-
tiple domains (Mansour, Mohri, and Rostamizadeh 2009;
Duan et al. 2009; Sun et al. 2011; Chattopadhyay et al.
2012). Several of these (Alessandro Bergamo 2010; Chat-
topadhyay et al. 2012; Duan et al. 2009) are classifier adap-
tation methods, which require the provision of labeled train-
ing data for each domain. Since ‘in the wild’ test datasets
may include domains not represented in the training data,
this limits their applicability. More importantly, these meth-
ods assume that the domain label is known in advance. For
example, the method of Chattopadhyay et al. (Chattopad-
hyay et al. 2012) detects fatigue from samples which are
directly associated with an individual. Since no correspond-
ing label is provided with web images, our approach is to
perform domain discovery in order to effectively adapt cate-
goryification to multiple, unlabeled domains.

Problem Statement
Motivation

Unlike existing domain adaptation methods that must be
provided the domain label for each point, our objective is
to improve classification accuracy for ‘in the wild’ datasets
by automatically estimating domain labels. The key chal-
lenge of domain assignment, in most cases, is that exist-
ing robust visual features are naturally designed to sepa-
rate the underlying semantic categories. Using these kind of
features directly with standard clustering method, for exam-
ple, may not obtain desirable domain estimation results. To
handle this challenge, we first propose a simple novel local
subspace representation of each image based on a different
understanding of feature distributions in the latent domains
modeling problem.

We consider each domain as a different low-rank manifold
embedded in the feature space. For each data image, its orig-
inal feature representation is considered as containing two



parts: one part depends on the semantic label and the other
is dependent on its latent domain; though inferred from the
same visual feature, we refer to these parts as the category-
feature and the domain-feature. Within the same semantic
category, due to the domain-feature, the intra-category im-
ages are variedly distributed on multiple manifolds in the
feature space.

Drawing inspiration from multiple manifold learning
methods (that assume the whole data set consists of multiple
low-rank manifolds in the high-dimensional space) (Elham-
ifar and Vidal 2011; Gong, Zhao, and Medioni 2012), we
assume multiple latent domains in same class are distributed
as multiple manifolds, and in the same manifold the local
subspace should be similar to each other. Thus we attempt to
obtain category-specific local subspace embedding for each
image to identify the multiple manifolds within same cate-
gory. We assume the local structure of each point is smooth
and can be derived from its e-nearest neighbor points within
the same category, then we infer a local subspace represen-
tation that presents the change tendency around the image
such as illumination, pose and so on.

Based on new subspace representation, we also propose a
novel regularized square-loss mutual information (Suzuki et
al. 2009) based domain labeling method, in which we formu-
late two key properties: the first one is to ensure the mutual
information between domain assignment and new subspace
representation to be maximized; the second one is a regular-
ized prior that encourages the underlying category distribu-
tion in each domain is close to the category distribution in
the whole training dataset, for which we adopt the squared
difference of two probability distributions. Within this prior,
we assume the frequent image category in the whole dataset
should also be frequent in each domain respectively, which
is common in visual data collections (Alessandro Bergamo
2010). More technique details in next section.

Problem Description

Let (X7 Y) = {(mla 91)7 (.'1,'2, y2)a IR (-rru yn)} denote
data pertaining to k semantic categories and m unknown la-
tent domains, z; € R” and y; € {1,--- , k} is the semantic
category label of data point x;. Our goal is to infer the do-
main assignment matrix for all data points Z € {0, 1}"*™
that: Z;; = 1 if data point x; belongs to domain j, and
Z;; = 0 otherwise. The formulation of problem is:
Z = argmin A(Z,Y) = ASMI(Z|{v(x:,yi)}ieq)
Ze{0,1}nxm

StV Y 2y =19V, Y 1y Ziy =1 (1)

J

where SMI(-]-) is the objective function representing the
compactness of domains which is based on square-loss mu-
tual information between new image representation and do-
main assignment; 7 (z;,y;) is our category-specific local
subspace representation for training image (x;, y;) learning
the its neighbors within same category y;; and A(-,-) is a
prior term that measures the difference of the category dis-
tribution between each domain and global training dataset.
In the constraint part, the first constraint ensures each im-
age to be assigned to unique domain, and the second one

requires that there is at least one image for each category in
each domain.

Though we use the semantic labels of training data for
domain assignment, this is still an unsupervised clustering
problem for domain assignment. In the problem, our goal is
to learn compact domain clusters, each of which will contain
data points from different semantic categories.

Latent Domains Discovery

As described above, our method has two novel el-
ements: a new subspace-based domain representation
~(x;,y;) for each training pair (z;y;), and the information-
maximization based domain labeling model that consists of
SMI(Z|{vy(xi,y:)}';) and A(Z,Y). These key elements
are described in the following subsections.

Class-Specific Local Subspace Learning for
Domain Representation ~(z;, y;)

The original feature presentation of image consists of
category-feature, domain-feature and noise. Within same
category, domain-feature is a key property that causes the
intra-category images distributed onto different manifolds,
such as multi-view classification. And it also causes the dif-
ficulty to distinguish the images between categories. Thus,
we need to find a new representation ~y(x;, y;) that only in-
cludes domain information and unmixes with other informa-
tions.

Given image datasets (x;,y;)"_;, we assume that the fea-
ture vectors {x;}? ; are sampled from multiple domain-
related manifolds based on their category labels {y;}!_; as
follows:

r; = f(75) + gy, (1) + 4 (2)

where f(-) is the smooth mapping function that embeds a la-
tent variable 7; to original feature space for domain-feature;
gy, () maps 7; to feature space for category-feature; and n;
represents noise. Then within the same category, for two
data points x; and its neighbor point x; that y; = y;, the
Taylor expansion is

vi —xj = f(1i) = f(75) + 9y. (i) — 9y, (75) + i —
= J(f;mi) (5 — 7i) + e + (9y: (i) — gy, (75) + i — 71(]‘3))

where x; is e-nearest neighbor of x; in same category y;, €;;
is Taylor approximation error and J(f;7;) is Jacobian ma-
trix (which we abbreviate J;). Obviously, J; represents the
change tendency of category y; at position z; in the origi-
nal feature space. And this change tendency always reflects
the domain that image belongs to. For example, same cate-
gory object images collected from dark and light situation,
the change tendency .J; expects the illumination change.

Obtaining local subspace J; for Domain Representation
v(zi,y;) Since x; is nearest neighbor of z; in same cate-
gory y;, the category-feature difference between the points
will be small, i.e. the distribution of this difference is Gaus-
sian with small variance. We then treat n;j = (gy,(1:) —



gy, (Tj) + n; — ny) as an ii.d. noise term with a homoge-
neous Gaussian distribution. Thus we can have

Xi — i1}, = Ji(T, — 1}, ) + E; + N )

where X; = |[x;,,%i,, - ,2;, | are m; points in
the e-neighborhood of x; within category y;, T} =
[TiysTins**+ +Ti,,] is corresponding latent coordinate ma-
trix and F; = [e“,eh, -+ €, ] is the local Taylor ap-
pr0x1mat10n error matrix. To estimate .J;, which minimizes
|E; — N; |2 |7, the objective function can be:

Ji = argmin |(Xz - xllﬁl) - Jz(Tz - 7—1121”%‘
Ji
= argmax Tr|J; (X; — milﬁi)(Xi — xil,Tm)TJi\ 5)

st Il T =14,

where T'r(+) is trace of matrix. To ensure the uniqueness of
Ji, we enforce the local isometry assumption making .J; an
orthonormal matrix, i.e. Jl-T J; = Ig,. Essentially, the solu-
tion of above equation is the largest d; eigenvectors of ma-
trix (X; — a;17 )(X; — x;1], )", We choose the number
d; of eigenvectors based on the change of the correspond-
ing eigenvalues. Thus, our local subspace representation for
each image could be linear subspaces with different number
of dimensions which is common that different domains are
represented by different subspaces.

It is also interesting that when x; equals to the mean vec-
tor of X, then Eq. 5 is same as PCA in local feature space
with same category.

Similarity Measurement for ~(z;,y;) With local sub-
space representation y(z;,y;) = J;, it’s not suitable to
use the Euclidean distance to measure their similarity,
we define a new similarity function with Gaussian kernel

K(y(zs,y:),v(25,5)) :

9(7(%7.%‘),7(%7 yj)>2)
7 ©)

where 6(y(z;,v:),7v(z;,y,)) is the principal angles (Wang,
Li, and Tao 2011) between the subspace space y(x;, y;), and

V(x5 y5)-

K(y(wi,y:),7(x5,y5)) = exp(—

Regularized Square-loss Mutual Information for
Domain Discovery

Based on the new feature representation ~(z;, y;), we pro-
pose a novel approach for domain assignment in this sec-
tion. As introduced in Sec., the formulation of our approach
includes two parts: SMI(Z|{v(x;,y;)}";) and A(Z,Y).

Modeling SMI(Z|{y(x;,y:)}?—;) As an informa-
tion measurement, squared-loss mutual information
(SMI) (Suzuki et al. 2009) is used to measure the statistical
correlation between random variables which is based
on Pearson divergence. Although mutual information
(MI) (Shannon 2001) is also a common measurement, but in
this paper, we adopt SMI because MI is nonconvex and thus
not straightforward to find a good local optimal solution.

Similar to (Sugiyama et al. 2011), with the new represen-
tation y(z;,y;), our SMI(Z|{v(X,Y)}) (we use SMT as
abbreviate) is defined by

;/(X . > p(y(@,))p(2)

p(v(7,9), 2)
p(y(z,y))p(2)

SMI =

By adopting the uniform domain-prior probability p(z) =
1/m, we can obtain our SMI:

m 9 1
sui= 5 [ Shinu)t)iey -

®)

Then we approximate domain-posterior probability
p(z|y(z,y)) as following kernel model:

(zly(2,y)) Zau

where «; , = 22727
ity defined in Eq.6. Furthurmore, empirically approximation

expectation, our SMI is derived as:

y),v(xi,y:)  9)

and K(-,-) is the kernel similar-

_m,re 1
SMI = 2ntr(a K a) 5 (10)

where @« = (aq,---, ) is matrix representation of do-
main assignment and o, = (s 1, ,0) 7.

Modeling A(Z,Y) Since we assume the category occures
frequently in whole dataset, it also should be frequent in
each domain, therefore we propose a category distribution
prior for each domain. We choose the total sume of the
squared difference of category probability p(y|z) in each do-
main and the category probability ¢(y) in whole dataset as
our loss function:

m k
AZY) =3 3 S0l —aw)?  an

z=1y=1

Since p(y|z) = >, 1=y and q(y) = >, 1,,—,/n is
constant as the category probability in whole dataset, we can
derive A(Z,Y) as:

m k
1
A(Z,)Y)= const. + E 504 E yyny)Oéz
z=1 y=1

Yy -qy))  (12)

M»

Il
-

Y

where ) = [V1,- -+, Vi] € {0, 1} is the category indi-
cator matrix that YV, = 1if y; = 4.
Subsequently, we combine Eq.10 and Eq.12, reformulate



the optimization of domain assignment as

: U R
Lomin S sal (Y WYy - ZAKHa,  (13)

z=1 y=1
k

—al(Q Yy -aly) + 8- R(w)
y=1

=1
Vzl/k>2a72>1/n7( —1)k)
z=1
a; — o) a-—al).
j:ll:l

In new formulation, we first relax the discrete assignment
to the real value o, € R™, and to avoid all the solution
{a.}7, to be reduced to same vector, we add a regular-
ization term for o which maximize the difference of solu-
tions of domains: (o; — )T (a; — «ay) if j # . Then
rewrite the second constraint which ensure that every do-
main has at least one image per category, thus the number of
images per domain is between k and n — (m — 1)k. Since
this relaxed problem is quadratic function with linear con-
straints, but the quadratic function could be nonconvex, so
we adopt CCCP (Yuille and Rangarajan 2002) method to
achieve satisfactory result and assign the z; into domain z
that z = argmax, p(z|y(z;,¥:)). In the experiment, we set
A =5and § = 10.

Experiment

In this section, we evaluate our approach in terms of its per-
formance for both domain assignment and visual on domain
adaptation using obtained assignment. We first compare our
domain assignment with a baseline method and state-of-
the-art methods from the literature. Then, using our domain
assignment result, we demonstrate improved classification
performance using a domain adaptation method that is ap-
plicable to ‘in the wild’ problems.

Dataset

Our experiments use two different datasets: office dataset
(Saenko et al. 2010) and bing-caltech dataset (Alessan-
dro Bergamo 2010). The office dataset is commonly used
to test domain adaptation, and provides the domain label of
each data point. It contains 31 object categories over three
domains: Amazon(a), Webcam(w) and Digital SLR(d).

In order to demonstrate improvement for domain adapta-
tion, we also use a subset of bing-caltech dataset which are
collected by searching Bing for an object keyword. Since it
contains real web data, this data set is more representative of
the ‘in the wild’ recognition problem, as it contains multiple
latent domains for each object category.

Given the visual image dataset, we use SURF (Bay et al.
2008) to extract features, which are quantized to words in
an 800-bin histogram, based on k-means clustering within
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Figure 2: domain clustering results in office dataset.

the feature space. The histograms are normalized and then
z-score to have zero means and unit standard deviation in
each dimension.

Comparison Result in Domain Assignment

Since latent domain discovery is a new problem, to our best
knowledge, Hoffman et al. (Hoffman et al. 2012) is the
only paper to try to address the problem to date and pro-
vide source code. Using their reference code, we compare
their performance to our method. As in their paper, we also
test k-means as a baseline method for domain assignment.

We use the office dataset for domain assignment ex-
periment, since it provides the domain label for each
image. To make use of this dataset effectively, we test
the various combinations of the three domains in the
office dataset. Finally, we obtain four different domain
assignment experiments: three instances of two-domain
problem (Amazon(a),Webcam(w)), (Amazon(a),DSLR(d)),
(DSLR(d),Webcam(w)) and one instance of three-domain
problem (Amazon(a),Webcam(w),DSLR(d)). The results
are shown in Figure 2. Comparing the three methods, ours
always gets a better result than both Hoffman et al. and k-
means. This is because both assume a Gaussian shaped do-
main distribution in the original feature space. More gener-
ally, the figure shows better performance for all methods in
separating the Amazon domain from the DSLR domain, as
compared to separating the DLSR and Webcam domains. In-
tuitively, this may be due to the lack of background texture
in the Amazon domain, while both the DSLR and Webcam
domains have confounding background textures.

Multiple Domain Adaptation with Identified
Domain from Source Image Datasets

With the domain membership matrix S for source dataset,
we introduce a straightforward way of applying our domain
assignments for domain adaptation. First, we train a domain
classifier P(z|x;) by Random Forest (Breiman 2001) and
compute the probability of domain assignment for any given
test data point x;. Then, given the testing set from target
domain, we choose one of discovered domains for super-



vised/unsupervised domain adaptation as follow:

N
2" = argmax P(z|X7) = H P(z|xy) (14)
J t=1

The goal is to choose the ‘similar’ source domain for do-
main adaptation. This is also a suitable way to demonstrate
the purity of our discovered domains, since the mixing of
true domains within an estimated domain will degrade the
performance of classification.

Comparison in Supervised Domain Adaptation Having
demonstrated the improved performance of our domain as-
signment, it is natural to wonder how this improves the per-
formance of domain adaptation. In this section, we adopt
multiple source domain transformation based on discovered
latent domains as Hoffman et al. (Hoffman et al. 2012).

We use a subset of bing-caltech 256 dataset (Alessan-
dro Bergamo 2010). First we choose bing dataset as source
domain, since bing data set includes multi-latent domains.
Then from the Bing dataset we choose 50 images from each
of the first 20 categories as source data. Set caltech-256 as
our target domain. we change the number of labeled data
points sampled from target domain (caltech data set) that
try to show the robustness of domain label obtained by our
method. Besides Hoffman et al.’s multi-domain adaptation
framework, we add two other baseline methods for super-
vised domain adaptation:

e SVM-t: A support vector machine using target training
data.

e arct: A category general feature transform method pro-
posed by (Saenko et al. 2010) which is single source
domain adaptation. We implement the transform learning
and then apply a SVM classifier.

Domain adaptation performance is shown in Figure 3. The
most obvious conclusion which can be drawn from this is
that multiple domain transformation methods out-perform
those that ignore latent domains while training with ’wild’
data. Also, as we increase the number of samples from tar-
get domain, only using the target data for training, SVM-
t can get better results than arct (Saenko et al. 2010) that
single domain transformation method, and multiple domain
transformation methods work better than SVM-t. It means
the mixing of multiple domains could lead to bad transfor-
mation based on arct (Saenko et al. 2010), and demonstrates
the necessity of domain discovery in complex data. Compar-
ing our domain adaptation performance with the state of art
method of Hoffman et al., we believe that our improved per-
formance is derived from the improved domain assignment
performance shown in the previous section.

Comparison in Unsupervised Domain Adaptation In
addition to the previous section’s demonstration of improved
performance for supervised domain adaptation, this sec-
tion shows its improvement in unsupervised domain adap-
tation. Whereas the supervised domain adaptation perfor-
mance could be attributed to the multiple domain transfor-
mation, the discovered domain may not work if we use it to
do domain adaptation alone.
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Figure 3: Supervised domain adaptation performance based
on domain discovery results in bing-caltech dataset.

(a,d)->w | (a,w)->d [ (d,w)->a | Mean
Single Domain 23.15 43.48 11.35 25.99
Hoffman et al. 2012 | 24.75 42.69 12.82 26.75
Our Method 29.31 43.62 13.25 28.73

Figure 4: The result of unsupervised domain adaptation with
discovered domain in office dataset.

Here, we adopt the office data set for this experiment,
training with mixed data from two of the three domains and
testing on a target domain of the held out data. Since in the
unsupervised domain adaptation problem, there is no labeled
target data, we do not compare to SVM-t in this experiment.

In this experiment, we adopt the two-step way for do-
main adaptation. After discovering domains in the training
data, we learn domain-specific classifiers and test the clas-
sifier on all data from target set. Then, based on Eq. 14, we
choose the domain with the maximum total weight and run
the unsupervised domain adaptation (Gong et al. 2012) be-
tween the chosen domain and the target domain. In figure 4,
our results demonstrate that domain selection performs bet-
ter than treating the source data as single domain, and that
our method outperforms Hoffman et al’s method. It strongly
demonstrates the superiority of our method.

Conclusions

In this paper, we propose a novel model for latent domains
discovery for visual domain adaptation. First, we provide a
new local subspace representation for each data based on
its neighbors within the same semantic category that reflects
local variations of the intrinsic intra-category change ten-
dency. Second, we propose a novel objective model based
on mutual information between new subspace representation
and domain assignment, and the prior of class distribution in
each domain. In future, we are planning to adopt our method
on other different area, such as sentimental classification.
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