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Abstract

We propose a novel combined global/local model for
active semi-supervised spectral clustering based on the
principle of uncertainty reduction. We iteratively com-
pute the derivative of the eigenvectors produced by
spectral decomposition with respect to each item/image,
and combine this with local label entropy provided by
the current clustering results in order to estimate the un-
certainty reduction potential of each item in the dataset.
We then generate pairwise queries with respect to the
best candidate item and retrieve the needed constraints
from the user. We evaluate our method using three dif-
ferent image datasets—faces, leaves and dogs, and con-
sistently demonstrate performance superior to the cur-
rent state-of-the-art.

Introduction
Semi-supervised clustering plays a crucial role in artificial
intelligence for its ability to enforce top-down semantic
structure while clustering data that is often noisy or incom-
plete (Basu, Bilenko, and Mooney 2004; Li and Liu 2009;
Chen and Zhang 2011). It has the potential to be a power-
ful tool in many problems, including facial recognition and
plant categorization (Biswas and Jacobs 2012).

In visual surveillance, for example, there is significant de-
mand for automated grouping of visual elements, whether
they are faces, plants or actions in video. However, ob-
taining large amounts of training data for this problem is
problematic—expecting typical humans to label a large set
of strangers’ faces or plant species is not realistic. However,
a human worker probably can reliably determine whether
two faces belong to the same person or two plants to the
same species, making it quite feasible to obtain pairwise
constraints for this problem by adopting a low-cost crowd-
sourcing tool such as Mechanical Turk.

However, even when using relatively inexpensive human
labor, any attempt to apply semi-supervised clustering meth-
ods to large-scale problems must still consider the cost of
obtaining large numbers of pairwise constraints. To over-
come these problems, researchers have begun exploring ac-
tive constraint selection methods which allow clustering
algorithms to intelligently select constraints based on the
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structure of the data and/or clustering results (Basu, Baner-
jee, and Mooney 2004; Xu, Desjardins, and Wagstaff 2005;
Wang and Davidson 2010; Xiong, Johnson, and Corso 2012;
Biswas and Jacobs 2012).

In this paper, we propose a novel hybrid global/local un-
certainty model that we use to perform efficient and effec-
tive item-based constraint selection in an online iterative
manner. In each iteration of the algorithm, we find the item
that will yield the greatest predicted reduction in the un-
certainty of the clustering, and generate pairwise questions.
The proposed framework is as follows (more details in next
section):
1 Randomly choose a single item, assign it to the first

certain set and initialize the pairwise constraint set as
empty. A certain set is those items from the same cluster
based on the user query responses.

2 Constrained Clustering: cluster all items into nc clus-
ters using the current pairwise constraint set.

3 Informative Item Selection: choose the most informa-
tive item based on our Global/Local uncertainty model.

4 Pairwise Constraint Queries: use pairwise user queries
to assign the selected item to a certain set and generate
pairwise constraints.

5 Repeat steps 2-4 until the human is satisfied with the
clustering result or the query budget is reached.

We run our method on face, leaf (Kumar et al. 2009), and
dog (Khosla et al. 2011) image datasets and find it consis-
tently outperforms existing techniques.

Hybrid Global-Local Active Clustering
First denote the data set X = {x1, x2, · · · , xn}, and the
corresponding similarity matrix W = {wij}. Also denote
the set of certain item sets Z = {Z1, · · · , Zm}, where Zi is
a set such that Zi ⊂ X and Zi ∩ Zj = ∅ ∀j 6= i, and an
item set U =

⋃
i Zi containing all current certain items.

Constrained clustering with pairwise constraints
In order to incorporate pairwise constraints into spectral
clustering, we adopt a simple and effective method called
spectral learning (Kamvar et al. 2003). Whenever we obtain
new pairwise constraints the algorithm directly modifies the
current similarity matrixW t, producing a new matrixW t+1

that reflects the information in those constraints. We then
proceed with the standard spectral clustering procedure.
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Pairwise query generation
After clustering and item selection, we must use pairwise
queries to assign the selected informative item xi to the cor-
rect certain set. We do this by finding the single item xl in
each certain set which is closest to xi, and then querying (in
order of ascending Euclidean distance) the true relationship
between xi and each xl, stopping when we obtain a must-
link constraint. We then add xi to the certain item set con-
taining that xl, or create a new certain set Zm+1 and add xi

to it if no must-link constraints are found.
Since the relation between the new item and all certain

sets in Z is known, we can now generate new pairwise con-
straints between the selected item xi and all items in U with-
out submitting any further queries to the human.

Global/local uncertainty model
In this section, we propose a global-local model for finding
the most informative item. We first assume that obtaining the
most informative item and querying pairs to make the chosen
item “certain” can decrease the uncertainty of the data set as
a whole and thus improve the clustering result.

To estimate the uncertainty-reducing impact of the se-
lected item, we adopt a first-order approximation using both
a global measure and a local one

xi = argmax
xi

G(xi;Lt, X,U) · L(xi;Ct, X) (1)

where G(xi;Lt, X,U) is global model used to estimate the
slope of the uncertainty reduction based on derivatives of
eigenvectors of the Laplacian Lt at xi; L(xi;Ct, X) is the
local model to estimate the step scale factor.

Global Model for estimating the slope of the uncer-
tainty reduction The spectral learning algorithm updates
the similarity matrix by W t+1 = W t + δW t at each itera-
tion. The clustering result is trivial to compute based on the
nc eigenvectors using k-means. Thus, we approximate the
derivative of uncertainty reduction by using the first order
change of the eigenvectors inspired by matrix perturbation
theory (Stewart and Sun 1990).

Assume Lt ≈
∑nc

j=1 λjvjv
T
j . In each iteration, for any

chosen point xi, the relation between xi and xk ∈ Xm will
be known, where Xm = {xi1 , xi2 , · · · , xim} sampled from
each certain set Zi ∈ Z . Thus wt

ik inW t will be updated for
clustering. Therefore we define our global model as:

G(xi;Lt, X,U) =
∑

xk∈Xm

∣∣∣∣ nc∑
j=1

dvj

dwt
ik

∣∣∣∣ (2)

=
∑

xk∈Xm

∣∣∣∣ nc∑
j=1

∑
p 6=j

vT
j [∂Lt/∂wt

ik]vp

λj − λp
vp

∣∣∣∣ .
It sums up the influence on the first order change of eigen-
vectors by altering elements wt

ik in similarity matrix W t as
the estimate of the influence of item xi.

Local Uncertainty Model for Approximating the Step
Scale Factor To evaluate the step size, under the assump-
tion that highly uncertain items will likely make the un-
certainty reduction go longer along the slope, we propose
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Figure 1: Performance of various active clustering meth-
ods with increasing numbers of queries in image sets. Best
viewed in color.

to estimate the local uncertainty of the item using entropy.
Specifically we evaluate entropy among local cluster labels
produced the current clustering results.

First, consider the current clustering result Ct =
{c1, c2, . . . , cnc}, where ci is a cluster and nc is the num-
ber of clusters. We can then define a simple local non-
parametric model based on similarity matrix W for de-
termining the probability of xi belonging to cluster cj :
P (cj |xi) =

∑
xl∈cj

wil/
∑

xl∈N (xi)
wil, where N (xi) is

the k nearest neighbor points to xi. Then the uncertainty of
item xi can be defined, based on entropy, as L(x;Ct, X) =
−
∑nc

j=1 P (cj |xi) logP (cj |xi).
Then according to Equation 1, we obtain our global-local

strategy to select the item which will yield the greatest un-
certainty reduction at each iteration.

Experiments
Dataset and Protocol: We evaluate our proposed frame-
work and informativeness measures on three image datasets:
leaf images, dog images and face images datasets. We set
k = 20.We use Jaccard’s Coefficient (Pang-Ning, Stein-
bach, and Kumar 2006) as cluster evaluation metrics that is
used in other active image clustering paper.
Comparison methods: Random Constraints, Active-
HACC (Biswas and Jacobs 2012), OCSNU (Xiong, John-
son, and Corso 2012), CAC1 (Biswas and Jacobs 2011) and
Active-KMeans (Basu, Banerjee, and Mooney 2004).
Results: Figure 1 shows the Jaccard’s Coefficient of dif-
ferent active clustering algorithms with varying numbers of
pairwise constraints queried. Our algorithm always performs
best on all image sets. And comparing with other method,
our method performs better in face-500 and dog-400 dataset
than in face-200 and leaf-1042, which is expected due to the
intrinsic dataset complexity.
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