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Abstract—This paper presents a novel framework for learning a generative image representation – the hybrid image template (HIT)
from a small number (i.e, 3 ∼ 20) of image examples. Each learned template is composed of, typically, 50 ∼ 500 image patches whose
geometric attributes (location, scale, orientation) may adapt in a local neighborhood for deformation, and whose appearances are
characterized respectively by four types of descriptors: local sketch (edge or bar), texture gradients with orientations, flatness regions,
and colors. These heterogeneous patches are automatically ranked and selected from a large pool according to their information gains
using an information projection framework. Intuitively, a patch has a higher information gain if (i) its feature statistics is consistent within
the training examples and is distinctive from the statistics of negative examples (i.e. generic images or examples from other categories);
and (ii) its feature statistics has less intra-class variations. The learning process pursues the most informative (for either generative
or discriminative purpose) patches one at a time and stops when the information gain is within statistical fluctuation. The template
is associated with a well-normalized probability model that integrates the heterogeneous feature statistics. This automated feature
selection procedure allows our algorithm to scale up to a wide range of image categories, from those with regular shapes to those with
stochastic texture. The learned representation captures the intrinsic characteristics of the object or scene categories. We evaluate the
hybrid image templates on several public benchmarks, and demonstrate classification performances on par with state-of-art methods
like HoG+SVM, and when small training sample sizes are used the proposed system shows a clear advantage.

Index Terms—Image Representation, Deformable Templates, Information Projection, Visual Learning, Statistical Modeling
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1 INTRODUCTION

1.1 Motivation and objective

I F asked what a tomato looks like, one may describe
it as an object with ”round shape, red color, smooth

surface, ...”. This description represents different visual
features that are common to tomato and distinct from
other objects. In this paper, we present a novel frame-
work for learning a fully generative image representation
– the hybrid image template (HIT) from a small number
(i.e. 3 ∼ 20) of image examples. Figure 1 shows two
hybrid image templates learned from a few tomato and
pear examples respectively. Each template is composed
of a number of image patches (typically 50 ∼ 100)
whose geometric attributes (location, scale, orientation)
may adapt in a local neighborhood to account for de-
formations and variations, and whose appearances are
characterized respectively by four types of descriptors:
local sketch (edge or bar), texture gradients (with ori-
entation field), flatness regions (smooth surface and
lighting), and colors. Naturally, there are large variations
in the representations of different classes, for example,
teapots may have common shape outline, but do not
have common texture or color, the hedgehog in Figure 2
has distinct texture and shape, but its color is often
less distinguishable from its background. So the essence
of our learning framework is to automatically select,
in a principled way, informative patches from a large
pool and compose them into a template with a well-
normalized probability model. It is fast to learn a HIT.

The authors are with the Department of Statistics, University of California,
Los Angeles. Email {zzsi, sczhu}@stat.ucla.edu

For 100 training images, it takes about one minute on a
standard PC.

structure texture flatness color

Fig. 1: Learning Hybrid Image Templates (HIT) from a few
examples for tomato and pear respectively. Each template con-
sists of a number of image patches: sketches (shape elements),
texture / gradients, flat area (smooth surface and lighting), and
colors.

In the following, we outline the four major issues in
learning the hybrid image templates.

1), The space of atomic image patches and a hybrid dic-
tionary. The HIT quantizes the space of small image
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Fig. 2: Analyzing the image space and its composition. A hedgehog image may be seen as a collection of local image patches
which are from different subspaces of varying dimensions and complexities.

patches (say 112 ∼ 192 pixels) into small subspaces that
can be explained by heterogeneous feature prototypes
(sketch, texture, flatness and color). The total number
of prototypes can be very large, and a rough computa-
tion estimates around 106 of them. It learns an image
template (of a larger size, e.g. 128 by 128) composed
of a small number (e.g. 50 ∼ 500) of feature prototypes
explaining small patches at different locations. This is
a very sparse representation, given that the number of
overlapping patches together with the candidate proto-
types explaining them easily form a huge over-complete
dictionary of more than 108 in size.

It is illustrative to look at the hedgehog example in
Figure 2. Patch A in the body of the hedgehog is a
texture pattern and belongs to a very high dimensional
subspace. Patch B at the nose is an edge primitive and
is from a low dimensional subspace. Besides textures
and primitives, there are also flat patches which do not
have structures, such as surfaces, walls, and the sky
with smooth shading, and chromatic patches which are
decomposed from the intensity image. The template of
the hedgehog is then composed of selected patches from
the hybrid dictionaries of four types of patches.

2), The criterion in selecting and ranking the atomic
patches. To compose the template, we seek image patches
that are informative in the following sense. i) It should
be consistently shared by images from a certain category
with little statistical fluctuation; and ii) it should be dis-
tinguishable from other images, i.e. negative examples.
We consider two cases in learning the model: a) The
negative examples are generic natural images and thus
the learned templates are generic and generative; and
b) The negative examples are from a competing object

class and thus the learned templates are discriminative.
For example, the templates in Figure 1 are generic. We
may also learn a tomato template against a pear, then
the selected features and their weights are adjusted. The
selection and ranking of these patches is guided by an
information projection principle.

3), The probability model on the templates. To compose the
image patches from the heterogeneous subspaces (mani-
folds), we need a well-normalized probability model that
integrates these patches under a common information
theoretic principle.

Starting from an initial reference model, we pursue
a sequence of probability model so as to minimize a
Kullback-Leibler divergence. At each step, we choose
a patch and its feature descriptor which leads to the
maximum reduction of the KL-divergence. The pursuit
process stops when the information gain is within the
statistical fluctuation. This information projection allows
us to learn the probabilistic image model with a rela-
tively small number of examples. For categories with
structural variations, we learn multiple hybrid templates
through an EM-like procedure with unknown object sub-
categories as missing data.

4), The latent variables for deformation. To robustly
model visual objects, we allow each patch to perturb
locally to account for the deformation and occlusion as
in the active basis model [2]. These local perturbations
are denoted by latent (nuisance) variables. Illustrated in
Figure 3 are hybrid image templates of pigeon, hedgehog
and pig head matched to image instances. For each
of the three figures, on the left is the learned hybrid
template. Black bars denote sketch features and red
dots denote texture features. The red dots illustrate the
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Three Learned HiT’s which are deformed and matched to image instances HoG for comparison

Fig. 3: Three automatically learned Hybrid Image Templates (HIT) together with their matching result on example images. The
black bars illustrate sketch features and the red dots visualize texture (orientation field) features. For visual comparison, the
weights of linear classifier on the HoG [1] feature map are shown to the right. HIT presents a much sparser image representation.

local orientation field, which can be strongly oriented
or isotropic, depending on different object categories
and locations. On the right are matched templates on
image instances. In these instances, the strength of the
bar reflects the feature response. The red dots in the right
figure denote the texture features fired on these images.
The deformation is captured by the local translation
and rotation of sketches, and by the perturbation in
the local orientation field (orientation histogram). The
occlusion is captured by missed correspondences. On
the right hand side of Figure 3, for each category we
show the weights of linear classifier on the histogram
of gradient (HoG [1]) map. The HoG map also captures
important information of the object category but with
a much denser representation. A sparser representation
is needed for understanding the intrinsic structures that
underlie the object categories.

1.2 Related work and comparison

1.2.1 Local feature descriptors

There has been a large amount of work on designing
image features in the literature, and they can be roughly
divided into two types. i) Geometric features, e.g. Haar-
like features, Canny edge detector [3], Gabor-like prim-
itives [4], and shape context descriptor [5]), explicitly
record locations of edges/bars and are good for image
patches with noticeable structures. We generally call
them sketch features in this paper. ii) Texture features,
in contrast, tend to be better described by histogram
statistics, for example, GIST [6], SIFT [7] and HoG [1].
In object recognition, sketch features are shown to work
well on objects with regular shapes, while texture fea-
tures are more suitable for complex objects with cluttered
appearance.

These two types of features are often studied sepa-
rately for structures at different resolutions, but in real
images, they are connected continuously through image

scaling [8]. That is, viewed in low resolution, geomet-
ric structures become blurred and merge into texture
appearance, and can become flat area (white noise) at
extremely low resolution. Thus a good representation
must be a hybrid one adaptive to different image scales.

1.2.2 Global image representation
Image templates, especially deformable ones, have been
extensively studied for detection, recognition and track-
ing, for example, deformable templates [9], active ap-
pearance models [10], pictorial structures [11], constel-
lation model [12], part-based latent SVM model [13],
recursive compositional model [14], region-based taxon-
omy [15], hierarchical parts dictionary[16] and Active
Basis model [2]. Our HIT model is closely related to the
Active Basis model which only uses sketches to represent
object shapes. In contrast, the HIT model integrates tex-
ture, flatness and color features and is more expressive.
Our model is also related to the primal sketch repre-
sentation [17] which combines sketchable (primitives)
and non-sketchable (textures and flatness) image compo-
nents. The difference is that the primal sketch is a low-
middle level visual representation for generic images
while the HIT model is a high level vision representation
for objects that have similar configurations in a category.

1.2.3 Model learning and pursuit
In the literature, feature selection and model pursuit has
been studied in three families of statistical models.

i) In Markov random (Gibbs) fields models, automated
feature selection and model pursuit has been studied
in text modeling [18], texture modeling [19], and other
tasks [20]. These learning algorithms iteratively find the
most informative feature statistics, and match them in
the learned probabilistic model.

ii) In sparse coding and generative modeling, the
active basis model [2] learns a sparse shape template
composed of Gabor wavelet elements at different loca-
tions by information projection [21], [19]. Another line
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of work learns hierarchical dirichlet processes [22] on
interest points extracted from images.

iii) In discriminative modeling, boosting algorithms
e.g. adaboost [23] and support vector machines [24]
learn hyperplanes in the feature space that optimize
the prediction of labels. In recent years, by combining
different types of features in a discriminative framework
[25], [26], [27], [28], [29], [30], [31], [32], much progress
has been made towards improving the accuracy of object
categorization.

The hybrid image templates include both texture fea-
tures used in Gibbs model and image primitives used
in active basis models. Thus the model is pursued in
a product space composed of both low-dimensional
subspaces for structures and high dimensional subspaces
for textures. We also incorporate latent variables for each
patch to perturb locally so that the deformable template
can be registered to the object instances.

1.3 Relation to HoG

The proposed HIT can be interpreted in context of the
popular HoG descriptor [1], but is one step beyond
it. It has far shorter (at least 1/10) feature dimension,
and thus lead to more robust classification performance
especially using small training sizes (e.g. 20∼100 train-
ing positives). In HoG the image lattice is partitioned
into equal sized cells (e.g. 8 by 8 pixels). Within each
cell a gradient histogram (a 30∼40 dimensional vector,
depending on implementation) is computed by pooling
over gradients, which is robust to local deformation.
However, the detailed deformation is not recorded in
the histogram. In HIT, the image lattice is divided into
overlapping patches, and each patch can be described
by one of the four feature types. One patch is similar to
one cell in HoG. More precisely, HIT has the following
advantages:

1) HIT is more sparse because it i) makes local deci-
sion by inhibition; ii) eliminates patches with high
intra-class variations under information projection;
iii) allows for local deformation of constituent el-
ements and records them explicitly by local max-
imization and iv) records high order statistics by
prototypes {h}. Table 1 gives an example of feature
dimensions comparing HIT with two other closely
related systems for the VOC horse category. And
HIT is customizable for different image categories;
while HoG is a generic image descriptor densely
populated over pixels.

2) HIT can be trained either using generative crite-
rion towards a hierarchical model, or with discrim-
inative criterion tuned towards classification.

3) HIT performs on par with the fine-tuned HoG
feature on public benchmarks, though its feature
dimension is only 1/10 of HoG. When using fewer
training examples, HIT outperforms HoG with a
clear margin.

HIT HoG [1] part-based
latent SVM[13]

feature length 8× 102 6.3× 103 4.9× 104

TABLE 1: Comparison of feature length.

HIT is also related to the part-based latent SVM model
[13]. In [13] the template includes a coarse-level root tem-
plate and several fine-level part templates, all of which
are discriminatively trained using SVM. It is shown that
the part-based latent SVM model performs better than
the baseline HoG+SVM in many public benchmarks. HIT
is not yet a part-based model, because its components
are atomic. It is expected that composing HIT into part-
based hierarchical template will lead to capability to
model larger deformation as well as better classification
performance. Hierarchical HIT is our ongoing work and
is beyond the scope of this paper.

2 REPRESENTATION

2.1 Hybrid image template
Let Λ be the image lattice for the object template which
is typically of 150 × 150 pixels. This template will un-
dergo a similarity transform to align with object instance
in images. The lattice is decomposed into a set of K
patches {Λk, k = 1, 2...,K} selected from a large pool
in the learning process through feature pursuit. As it
was illustrated in Figure 1, these patches belong to four
bands: sketch, texture/gradient field, flatness, and color
respectively, and do not form a partition of the lattice Λ
for two reasons:
• Certain pixels on Λ are left unexplained due to

inconsistent image appearances at these positions.
• Two selected patches from different bands may

overlap each other in position. For example, a sketch
patch and a color patch can occupy the same region,
but we make sure the sketch feature descriptor
and color descriptor extracted from them would
represent largely uncorrelated information.

The hybrid image template consists of the following
components,

HIT = ( {Λk, `k, {Bk or hk}, δk :, k = 1, 2, ...,K}, Θ) (1)

1) Λk ⊂ Λ is the k-th patch lattice described above.
2) `k ∈ {′skt′,′ txt′,′ flt′,′ clr′} is the type of the patch.
3) Bk or hk is the feature prototype for the k-th patch.

If `k = ′skt′, then the patch is described by a basis
function Bk for the image primitive, otherwise it is
described by a histogram hk for texture gradients,
flatness or color respectively.

4) δk = (δkx, δky, δkθ): the latent variables for the
local variabilities of the k-th patch, i.e. the local
translations and rotations of selected patches.

5) Θ = {λk, zk : k = 1, 2, ...,K} are the parameters
of the probabilistic model p (to be discussed in
the subsection). λk, zk are the linear coefficient and
normalizing constant for the k-th patch.
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2.2 Prototypes, ε - balls, and saturation function
Let IΛk

be the image defined on the patch Λk ⊂ Λ. For
`k = ′skt′, the prototype Bk defines a subspace through
an explicit function for IΛk

(a sparse coding model),

Ω(Bk) = {IΛk
: IΛk

= ckBk + ε}. (2)

For `k ∈ {′txt′,′ flt′,′ clr′}, the prototype defines a sub-
space through an implicit function for IΛk

which con-
strains the histogram (a Markov random field model),

Ω(hk) = {IΛk
: H(IΛk

) = hk + ε}. (3)

H(IΛk
) extracts the histogram (texture gradient, flatness,

or color) from IΛk
.

In Ω(Bk), the distance is measured in the image space,

ρex(IΛk
) = ‖IΛk

− cBk‖2 (4)

while in Ω(hk), the distance is measured in the projected
histogram space with L1 or L2 norm.

ρim(IΛk
) = ‖H(IΛk

)− hk‖2 (5)

Intuitively, we may view the Ω(Bk) and Ω(hk) as
ε-balls centered at the prototypes Bk and hk respec-
tively, with different metrics. Each ε-ball is a set of
image patches which are perceptually equivalent. Thus
the image space of HIT is the product space of these
heterogeneous subspaces: Ω(HIT ) =

∏K
k=1 Ωk, on which

a probability model is concentrated. Due to statistical
fluctuations in small patches, these ε-balls have soft
boundaries. Thus we use a sigmoid function to indicate
whether a patch IΛk

belongs to a ball Ω(Bk) or Ω(hk).

r(IΛk
) = S(ρ(IΛk

)), (6)

where ρ can be either ρex or ρim. S(x) is a saturation
function with maximum at x = 0:

S(x) = τ

(
2

1 + e−2(η−x)/τ
− 1

)
, (7)

with shape parameters τ and η. Following [2] we set
τ = 6 and η is locally adaptive: η = ‖IΛk

‖2 where IΛk

denotes the local image patch. We call r(IΛk
) the response

of the feature (prototype Bk or hk) on patch IΛk
.

2.3 Projecting image patches to 1D responses
Though the image patches are from heterogeneous sub-
spaces of varying dimensions with different metrics, we
project them into the one-dimensional feature response
r(IΛk

), on which we can calculate the statistics (expec-
tation) of r(IΛk

) over the training set regardless of the
types of patches. This way it is easy to integrate them in
a probabilistic model.

In the following we discuss the details of computing
the responses for the four different image subspaces.

Given an input color image I on lattice Λ, we first
transform it into a HSV-space with HS being the chro-
matic information and V the gray level image. We apply
a common set of filters ∆ to the gray level image. The

dictionary ∆ includes Gabor filters (sine and cosine)
at 3 scales and 16 orientations. The Gabor filter of the
canonical scale and orientation is of the form: F (x, y) ∝
exp{−(x/σ1)2 − (y/σ2)2}eix with σ1 = 5, σ2 = 10.

1). Calculating responses on primitives. When a patch IΛk

contains a prominent primitive, such as an edge or bar, it
is dominated by a filter which inhibits all the other filters.
Thus the whole patch is represented by a single filter,
which is called a Basis function Bk ∈ ∆. The response is
calculated as the local maximum over the activity δk,

rskt(IΛk
) = max

δx,δy,δθ
S(‖I− cBx+δx,y+δy,o+δo‖2). (8)

The local maximum pooling is proposed by [33] as a
possible function of complex cells in V1.

2). Calculating responses on texture. In contrast to the
primitives, a texture patch usually contains many small
elements, such as the patch on the hedgehog body
in Figure 1. As a result, many filters have medium
responses on the image patch. Thus we pool a histogram
of these filters collectively over the local patch to form
a histogram descriptor H(I).

The texture response is calculated by

rtxt(IΛk
) = S(‖H(IΛk

)− h‖2), (9)

where h is a pre-computed histogram prototype (one
may consider it as a cluster center of similar texture
patches). More specifically, h is obtained by averaging
the histograms at the same position of roughly aligned
positive example images. For texture, we are only in-
terested in the medium to strong strength along certain
directions. So we replace the indicator function, which
is often used in histogram binning , by a continuous
function a(x) = 12

1+e−x/3 − 6. The histogram is then
weighted into one bin for each filter,

Ho(IΛk
) =

1

|Λk|
∑

(x,y)∈Λk

a(|Fo ∗ IΛk
|2). (10)

(a) a(x) (b) b(x) (c) 1(x) (d) S(x)

1Fig. 4: Plotting the four functions: a(x), b(x), 1(x), S(x).

Thus we obtain the oriented histogram for all filters
as a |O|-vector,

H(IΛk
) = (H1, ...,H|O|). (11)

It measures the strengths in all orientations.
3). Calculating responses on flat patch. By flat patch we

mean image area that are void of structures, especially
edges. Thus filters have near-zero responses. They are
helpful for suppressing false alarms in cluttered areas.
As a texture-less measure, we choose a few small filters
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∆flt = {∇x,∇y, LoG} and further compress the texture
histogram into a single scalar,

H(IΛk
) =

∑
F∈∆flt

∑
(x,y)∈Λk

b(|Fo ∗ IΛk
|2). (12)

b() is a function that measures the featureless responses.
It takes the form of a sigmoid function like S() but with
different shape parameters. In Figure 4 we plot the four
functions a(), b(),1() and S() for comparison.

Then the flatness response is defined as,

rflt(IΛk
) = S(H(IΛk

)− h). (13)

In the above h = 0 is a scalar for flatness prototype.
4). Calculating responses on color. The chromatic de-

scriptors are informative for certain object categories.
Similar to orientation histogram, we calculate a his-
togram Hclr(IΛk

) on the color space (we use the 2D HS-
space in the HSV format). Then the color patch response
is defined as the saturated distance between the color
histogram of the observed image and the prototype
histogram h,

rclr(IΛk
) = S(‖Hclr(IΛk

)− h‖2). (14)

In summary, a HIT template consists of K prototypes
{Bk or hk, k = 1, · · · ,K} for sketch, texture/gradient,
flatness, and color patches respectively which define
K-subspaces (or ε-balls) Ω(BK) or Ω(hk) of varying
dimensions. These ε-balls quantize the image space with
different metrics. An input image I on lattice Λ is then
projected to the HIT and is represented by a vector of
responses:

I→ (r1, r2, ..., rK)

where rk is a soft measure for whether the image patch
IΛk

belongs to the subspace defined by the correspond-
ing prototype. In the next section we will define a
probability model on image I based on these responses.

3 LEARNING THE HYBRID IMAGE TEMPLATES

We present an algorithm for learning the hybrid image
templates automatically from a set of image examples. It
pursues the image patches, calculates their prototypes,
and derive a probability model sequentially until the
information gain is within the statistical fluctuation – a
model complexity criterion similar to AIC [34].

3.1 Template pursuit by information projection
Let f(I) be the underlying probability distribution for
an image category, and our objective is to learn a series
of models that approach f from an initial or reference
model q,

q = p0 → p1 → p2 → · · · → pK ≈ f. (15)

These models sequentially match the observed marginal
statistics collected from the samples of f . With more
marginal statistics matched between the model p and

f , p will approach f in terms of reducing the Kullback-
Leibler divergence KL(f ||p) monotonically.

The main input to the learning algorithm is a set of
positive examples

D+ = {I1, ..., In} ∼ f,

where f is the underlying target image distribution and
∼ means sampled from. For simplicity, we may assume
these images contain roughly aligned objects that can
be explained by a common HIT template. When this
alignment assumption is not satisfied, we can adopt an
EM-like iterative procedure with the unknown object
localization as missing data. See [2] and Sec. 5.5 for
examples of learning from non-aligned objects. We are
also given a set of negative examples

D− = {J1, ...,JN} ∼ reference distribution q.

The negative examples are only used for pooling
marginal histograms of one-dimensional feature re-
sponses in a pre-computation step.

The image lattice Λ is divided into overlapping
patches for multiple scales by a scanning window with
a step size about 10% of the window size. Then we
calculate their corresponding prototypes and responses
for all images in D+. The sketch prototypes Bi are
specified by the Gabor dictionary ∆, and the histogram
prototypes hk are obtained by computing the histograms
for positive examples in the same region of template
lattice and then taking the average. As a result, we obtain
an excessive number of candidate patches.

Ωcand = {Λj , `j , {Bj or hj} : j = 1, 2, ...,M}. (16)

From Ωcand, we will select the most informative patches
and their corresponding prototypes for HIT.

By induction, at the k-th step, we have a HIT with
k − 1 patches and a model p = pk−1:

HITk−1 = ( {Λj , `j , Bj or hj , δj , j = 1, ..., k − 1}, Θk−1).

Consider a new candidate patch Λk in Ωcand and its
responses on n positive examples and N negative ex-
amples:

{r+
k,i, i = 1, ..., n} {r−k,i, i = 1, ..., N}. (17)

And let r̄+
k and r̄−k be the sample means on the two sets.

The gain of adding this patch to the template is mea-
sured by the KL divergence between the target marginal
distribution f(rk) and the current model pk−1(rk), as this
represents the new information in the training data that
is not yet captured in the model. Among all the candi-
date patches, the one with the largest gain is selected.

To estimate this gain, we use Monte-Carlo methods
with samples from f(rk) and pk−1(rk). Obviously {r+

k,i}
is a fair sample from f(rk). While to sample from
pk−1(rk), one may use importance sampling on {r−k,i}, i.e.
re-weighting the examples by pk−1(rk)

q(rk) . Here we simplify
the problem by a conditional independence assumption
as stated in previous section. A feature response r1(IΛ1

)
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is roughly uncorrelated with r2(IΛ2
) if one of the fol-

lowing holds: i) the two patches Λ1 and Λ2 have little
overlap; ii) Λ1 and Λ2 are from different scales. If at the
k-th step we have removed from Ωcand all the candidate
patches that overlap with selected patches, then rk is
roughly uncorrelated with all the previously selected
responses r1, ..., rk−1. As a result, pk−1(rk) = q(rk) and
{r−k,i} can be used as a sample of pk−1(rk). The exact
formula for estimating the gain (i.e. KL divergence be-
tween f(rk) and pk−1(rk)) is given in Sec. 3.2 once we
have derived the parametric form of p in the following.

For a selected patch Λk, the new model p = pk is
required to match certain observed statistics (e.g. first
moment) while it should be also close to the learned
model pk−1 to preserve the previous constraints. This
is commonly expressed as a constrained optimization
problem [18], [19])

p∗k = arg min KL(pk|pk−1) (18)
s.t. Epk [rk] = Ef [rk] (19)

By solving the Euler-Lagrange equation with Lagrange
multipliers {λj} and γ,

∂

∂pk

{∑
I

pk(I) log
pk(I)

pk−1(I)
+ λk(Epk [rj ]− Ef [rj ])

+γ(
∑
I

pk(I)− 1)
}

= 0.

Thus we have,

pk(I) = pk−1(I)
1

zk
exp{−λkrk(I)}. (20)

zk = Eq [exp{λkrk(IΛk
)}] is a normalizing constant. This

can be estimated by the negative samples,

zk ≈
1

N

N∑
i=1

eλkr(Ji,Λk
). (21)

λk is the parameter (Lagrange multiplier) to satisfy
constraint in eqn (19),

Ep[rk] ≈ 1

N

N∑
i=1

[
r(Ji,Λk

)eλkr(Ji,Λk
)
] 1

zk
= r̄+

k . (22)

In computation, we can look up r̄+
k in the table to find the

best λk. The importance sampling is a good estimation
in calculating λk and zk because in our model r is one
dimensional.

By recursion, we have a factorized log-linear form,

pK(I) = q(I)

K∏
j=1

[
1

zj
exp{λjrj(IΛj )}

]
(23)

The above pursuit algorithm is related to projection
pursuit [21]. But instead of using product of marginal
histograms, our model is a product of parametric likeli-
hood ratio functions, which has much fewer parameters
and more robust than the classic projection pursuit,
especially when the training sample size is small (e.g.

10 50). Besides, each sketch feature is associated with a
latent variable describing its deformation or perturbation
that varies different training examples.

3.2 Interpretation of the learning procedure
Each learning step in the previous subsection observes
the following Pythagorean theorem which is known in
information projection [18], [19].

Proposition 1: The model pk−1, pk and the underlying
probability f satisfy the following equation,

KL(f || pk−1)−KL(f || pk) = KL(pk || pk−1) > 0. (24)

This ensures the convergence of the learning process,
given that we can find informative feature responses rk
that can tell the difference between Ef [rk] = Epk [rk] and
Eq[rk] = Epk−1

[rk].
Figure 5 shows the geometric interpretation.

Fig. 5: Learning by information projection. The series of models
p0, p1, ..., pK converge to the target probability f monotonically
by sequentially matching the constraints.

In Figure 5, we consider the space of all possible
probabilities where each point is a model. Our under-
lying probability f and the initial probability q are two
points in the space with a large divergence KL(f || q).
The learning process iterates the following two steps.

1), Min-step. Suppose we have chosen a patch Λk and
its prototype, and calculated its statistics Ef [rk] ≈ r̄+

k . We
denote the set of all models p that has the same statistics
by a set,

Ωk = {p : Ep[rk(IΛk
)] = Ef [rk(IΛk

)]}.

This is illustrated by a curve passing point f . Thus we
find a model p∗k on this curve through a perpendicular
projection from pk−1 to Ωk. In other words, p∗k is the
model that is closest to pk−1 on Ωk to preserve the
previously learned statistics,

p∗k or λ∗k = arg min
Ωk

KL(pk || pk−1). (25)

This step solves for λk and zk in equations (21) and (22).
2). Max-step. Among all the candidate patches and

their prototypes in Ωcand, we need to choose a
patch/prototype which has the largest difference be-
tween Epk−1

[rk] and Epk [rk].

p∗k or (λk, Bk/hk)∗ = arg max
Ωcand

KL(pk || pk−1).

Intuitively, this is to choose a curve in Figure 5 which
is the farthest away from the current model pk−1. By
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equation (24), this is to choose the patch that maximizing
the reduction of KL-divergence,

(λk, Bk/hk)∗ = arg max
Ωcand

[KL(f || pk−1)−KL(f || pk)] .

We define the information gain at the k-th step by,

gain: Igk = KL(pk || pk−1)

= λkEf [rk]− log zk ≈ λkr̄+
k − log zk.(26)

After k steps, the total information gain is:

KL(pk || q) ≈
k∑
j=1

(λj r̄
+
j − log zj). (27)

3.3 Correcting the information gain.

Due to limited training examples, the estimated infor-
mation gain is subject to fluctuation error. We propose
to correct it considering the bias and variance of the
estimated expectation on positive examples. Recall that
λk is the parameter learned according to Ef [rk], and
empirically we estimate λ̂k from r̄+

k . While pk(I;λk) is
the desired model, we can only get p̂k(I; λ̂k) in practice.
Consequently, the estimated information gain is,

Îgk , KL(p̂k‖pk−1) = λ̂kEpk [rk(I)]− log zk.

The true information gain Igk is discounted with an AIC
type ([34]) of penalty

Igk ≈ Îgk −
1

n

Varf̂ (rk)

Varp̂k(rk)
, (28)

where Varf̂ (rk) is estimated on n positive examples. That
is, the information gain is discounted by the relative
variance of the marginal feature statistic. When p̂k(rk) is
a good fit for f̂(rk), we may assume the discount factor
only depends on the training sample size n.

3.4 Discriminative adjustments of HIT

The template matching score of an HIT on a testing
image is defined as the log likelihood ratio computed
from Eq. (23):

Score(I; HIT) = log
pK(I; HIT)

q(I)
=

K∑
j=1

λjrj − log zj (29)

This template matching score is linear in the feature
responses {rj} and can be interpreted discriminatively if
we treat the two image distributions f(I) and q(I) as the
generating models for positive and negative examples:

log
p(+|I)
p(−|I)

=

K∑
j=1

wjrj + w0 (30)

where +,− denote binary labels of images, wj = λj and
w0 = −

∑K
j=1 log zj .

The two likelihood ratios in Eq. (29) and (30) are
closely connected by the following Bayesian formula,

p(+|I)
p(−|I)

=
p(I|+)

p(I|−)
· p(+)

p(−)
=
pK(I; HIT)

q(I)
· p(+)

p(−)

and their forms are different only by a constant p(+)
p(−) , the

ratio between amount of positive and negative examples.
To obtain good classification performances on large

data sets, it is often desirable to adjust the parameters in
Eq. (29) or (30) using a discriminative criterion. In this
paper we use logistic regression to adjust the parameters.

Algorithm 1: Learning a hybrid image template.
Let template T = empty ;1
Divide the template lattice into overlapping candidate2
patches at multiple scales;
Prepare candidate sketch, texture, flatness and color3
features for the candidate patches: the feature responses
are computed according to Section 2.3;
foreach candidate feature response rk do4

Compute its information gain by Eq. (26);5
Adjust the information gain by Eq. (28);6

end7
repeat8

Select rk∗ that maximizes gain;9
Estimate the model parameter λk (feature weight) that10
best satisfies Eq. (22);
Perform local inhibition such that neighboring11
features of the same type will not be selected;

until gain is smaller than a threshold τ ;12
Output:13
The template T with selected features, each with a weight14
λ and a normalizing constant z;

4 ALGORITHMS FOR LEARNING & DETECTION

4.1 Learning

The stepwise learning algorithm for hybrid image tem-
plates is described in Algorithm 1, with the stopping
criterion τ being a global parameter. To accelerate the
feature selection, we may separate candidate features of
different types and scales into several groups that are not
correlated with one another. Within each small group
of candidate features, the cost of feature selection is
greatly reduced. For fast computation, we utilize a rank
preserving (or monotonic) function of the information
gain. Let r̄+ be the sample average of feature response on
positive examples. Let q(rk) be the frequency histogram
pooled from the feature responses on negative examples.
The maximum likelihood estimator λ∗ , arg maxλ Igk
is determined by r̄+ and q(r). It can be shown that, if
we can assume the reference distribution q(rk) stays the
same for different k, then Igk computed using λ∗ is a
monotonic increasing function of r̄+. This assumption
holds for sketch and flatness features, and is a good
approximation for texture and color histogram features.
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Algorithm 2: Detecting a hybrid image template.
foreach x,y,t do1

Compute the feature response map (SUM1 maps)2

r(t)(x, y) where t indexes feature type ;
end3
foreach x,y,t do4

rLMAX(t)

(x, y)← LocalMaxPooling(r(t)(x, y));5
where the maximization is over local translation and6
rotation; we call them MAX1 maps. We also record
the local perturbations (ARGMAX1 maps)
corresponding to local maxima.

end7
foreach x,y,o,s do8

Compute Score(x, y, o, s) (SUM2 maps) by scanning9
the template over the MAX1 maps:

Score(x, y, o, s) =

K∑
j=1

(
λjr

(x,y,o,s)
j − log zj

)
where r(x,y,o,s)j denotes the response of the j-th
selected feature after transforming the template by
translation (x, y), rotation o and scaling s.

end10
(x∗, y∗, o∗, s∗)← argmaxScore(x, y, o, s);11
The object is detected by HIT at (x*,y*, o*, s*).12
Given the localization of the object, find the locations and13
rotations of its components according to ARGMAX1
maps, and detailed deformation of HIT (a parse tree) is
found.

4.2 Detection
Detecting a HIT in a testing image is straight-forward. If
we discard the hidden variables controlling the template
deformation, then the detection is the same as one would
run a face detector (as a linear classifier) with a sliding
window on an image. Now to detect a HIT, we not only
find the global translation and rotation of the matched
template, but also infer all the perturbations of the small
patches inside the template. Inspired by the cortex-like
systems [33], [35], [36], we have adopted a recursive
SUM-MAX procedure similar to [2], which is decribed
in Algorithm 2.

5 EXPERIMENT AND EVALUATION

We present six experiments studying the properties of
HIT learning and evaluate their performance for classi-
fication on commonly used benchmarks.

5.1 E1: Learning HIT for image categories
In the first experiment we are interested in whether the
learning algorithm can identify and select meaningful
descriptors for different image categories. We apply the
learning algorithm to 14 object or scene image categories.
Figure 6 shows the learned hybrid image templates.
The number of training images for each category varies.
Most categories have around 30 training examples, and
some categories have as few as 6. Sketch and texture
patches are selected for most categories. Flatness patches
are selected for tomato and the sky areas. Many color

1

sketch texture flatness color image examples

Fig. 6: Learned hybrid image templates with sketch, texture,
flatness and color and features. For each row in the figure, in
the first column is the image template with selected sketch, tex-
ture, flatness and color features. Then four training examples
are shown in the final column. Best viewed in color.

patches are selected for tomato, pizza, highway and
forest, and some are chosen for panda, palm tree and
sunset. These learned HIT’s capture human intuition
better in comparison to other popular representations,
such as HoG [1] as is shown in Figure 3, and have richer
features than the active basis model [2] and the classical
AAM models [10] and deformable templates [9].

5.2 E2: Sketch-texture contributions to classification

In the second experiment, we study how the sketch and
texture patches are ordered by their information gains
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head/shoulder hedgehog pizza water patches

Fig. 7: Competition of sketch and texture patches. Top 40 selected patches are ordered by their information gains in decreasing
order in each category. Hollow bars are for sketch patches, and solid red bars are for texture patches. 1

(a) human head/shoulder (b) cat head (c) pig head (d) hedgehog

Fig. 8: Improvement on classification due to the combination of sketch and texture features. In each plot, the area under ROC
curve (AUC) is averaged over cross validation runs and plotted against the number of positive training examples. The dotted
lines indicate 95% confidence bounds.

in different categories, and how much they contribute
to classification.

We choose four categories ranging from structured
to textured: head-shoulder, hedgehog, pizza, and wavy
water. Each category has 15 image examples, some of
which are shown in Figure 7. We plot the information
gains of the selected patches in decreasing order: the
hollow bars are for sketch patches and the solid (red)
bars are for texture patches. For image categories with
regular shape, e.g. head/shoulder, sketches dominate the
information gain. For hedgehog, pizza and wavy water,
as there are cluttered structures inside objects, texture
patches make bigger contributions.

We test the contributions of sketch and texture
for classification on other four categories: human
head/shoulder, cat head, pig head and hedgehog. For
binary classification, each category has 100 positive ex-
amples which are classified against a common set of 600
random negative images. For each category, we compare
the AUC (area under ROC curve) of the HIT against
performances using only sketch or texture patches re-
spectively. Figure 8 plots the three curves with their
confidence intervals with 5 cross validation runs.

5.3 E3: Hybrid image templates over scales
As studied in [8], there is a continuous transition from
cartoon sketches (low complexity or low entropy), to
object (mixing sketches and textures), to stochastic tex-
ture (no sketch), and finally to flatness (pure Gaussian

1Fig. 9: Top: studying the transition of sketch, texture and
flatness patterns by finding correspondences of features across
scales. Bottom: learned sketch-only and texture-only templates
from 20 cat images at multiple scales.

noise with small variance) when we scale down the
images. Therefore the HIT must also change over scales.
In Figure 9, we show the learned HIT’s of cat at four
distinct scales. Consider an image patch of cat’s whisker.
At a very fine scale, individual whiskers are recognizable
and many sketches are used to describe the image patch.
At a coarse scale, the whisker becomes texture. In other
words, each patch exists only for a range of scales.
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HoG+SVM[1] Baseline HIT Mixture
of HIT

Part-based
LSVM[13]

70.8% 71.6% 75.6% 77.6%

TABLE 2: Recognition accuracies on the animal faces dataset.

5.4 E4: Learning pairwise contrast templates

Fig. 10: Contrast templates for cat vs. wolf and cat vs. dog.

What is in common and what is different between
cats and wolves? It is interesting to study the pair-
wise contrast template which can be used to discriminate
between two categories. Here we provide some intuition
into why HIT can be used for classification.

Suppose we are given examples for two categories C1

and C2. Let HIT1 and HIT2 be the learned HIT templates
against a common generic reference model q. Consider
two methods for learning contrast templates HIT1−2 and
HIT2−1. In method A, we replace the generic negative ex-
amples by the category that we are discriminating from.
During learning, the information gain for any common
features between the two categories is reduced, and the
resulting contrast templates emphasize the differences.

method A: HITA
1−2 = log

p(I|HIT1)

p(I|HIT2)

= log
p(I|HIT1)

q(I)
− log

p(I|HIT2)

q(I)
= HIT1 −HIT2.

In method B, we take the union of selected features from
HIT1 and HIT2 and re-weight them by a discriminative
learning process such as SVM.

method B: HITB
1−2 = argmaxMargin(HIT)

Figure 10 shows two contrast templates: cat vs. wolf,
and cat vs. dog. We can see that, by contrasting gener-
ative models, we already obtain reasonable one-vs-one
classifiers similar to the ones discriminatively trained.
This explains why the HIT trained generatively can be
adapted for discriminative tasks.

5.5 E5: Weakly supervised clustering of HIT’s
In this experiment we are interested in the learning
and classification of hybrid image templates in the
context of weakly supervised learning and clustering.
We also introduce a new dataset: LHI-Animal-Faces.
Figure 11 provides an overview of the dataset. It contains

around 2200 images for 20 categories animal or hu-
man faces.Compared to other benchmarks, LHI-Animal-
Faces has several good properties: (1) the animal face
categories are similar to each other due to evolutional
relationship and shared parts, and it is a challenging task
to discern them; (2) the animal face categories exhibit
interesting within-class variation, which includes (i) ro-
tation and flip transforms, e.g. rotated panda faces and
left-or-right oriented pigeon heads; (ii) posture variation,
e.g. rabbits with standing ears and relaxed ears; and (iii)
sub-types, e.g. male and female lions.

We compare four systems on this dataset: (a) HoG
feature trained with SVM [1], (b) HIT, (c) multiple trans-
formation invariant HITs (Mixture of HIT) and (d) part-
based HoG feature trained with latent SVM [13]. For
system (c), we learn five HITs for each categories (in
total 20×5 =100 templates). During learning, we use an
iterative EM procedure to infer the unknown rotation,
reflection and translation of each template. For system
(d), we learn two reflection invariant templates per
category. We find using more templates does not help in
system (d). Table 2 shows the multi-class recognition ac-
curacies for four systems. By adding rotation/reflection
invariance and clustering during learning process, we
are able to improve the accuracy from 0.72 to 0.76,
outperforming the similar system [1] by a clear margin.
The performance is close to the part-based latent SVM
model [13] which has much more parameters with a
compositional hierarchy. From the confusion matrices,
we find the top two confusions are caused by sheep head
vs. cow head, and pigeon head vs. eagle head.

Learned templates. Figure 13 shows several distinct
clusters of animal face images automatically obtained
by the algorithm. Each cluster is modeled by one HIT
template, which is invariant to translation, rotation and
reflection. For example, the ducks in Figure 13 facing
left and right are identified as the same object category
and described by one HIT. For illustration purpose only
sketch features of the template are shown. Particularly
note that the two types of rabbit head images with
standing ears vs. with relaxed ears are automatically
discovered by the learning algorithm.

5.6 E6: Experiments on commonly used benchmarks

In this section, we evaluate the HIT in terms of its clas-
sification performance on commonly used benchmarks
and put it in context with other state-or-art methods. The
benchmarks include INRIA person [1], VOC2007 [37],
Caltech-101 [38] and a new dataset LHI-Animal-Faces to
be introduced in Sec. 5.5. We compare the classification
performance of HIT with HoG feature [1] trained with
SVM, which is equivalent to the root template of part-
based latent SVM model [13]. For HoG we use the imple-
mentation by [13]. Although HIT is originally designed
for generating the image data rather than classification,
its performance is on par with state-or-art.

Parameters of HIT. Parameters important for classi-
fication performance include: (1) The saturation upper-
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Fig. 11: The LHI-Animal-Faces dataset. Three images are shown for each of the 20 categories.

1

Fig. 12: Learned HIT’s from the animal face dataset. One HIT is learned per category. Only sketches are shown for clarity.

1Fig. 13: HIT templates clustering results on animal faces.

bound τ in Eq.(7); (2) the neighborhood size for local
maximum pooling; (3) the neighborhood size for pooling
texture (orientation histogram) and flatness features. We
find the best performance is achieved when the upper-
bound τ is 5, the local maximum pooling is performed
in a 11 by 11 pixels neighborhood, and texture/flatness
features are pooled within a 9 by 9 pixels neighborhood.
These parameter settings are chosen by cross validation.
We also find that performing a simple local normal-
ization on sketch response maps rsk(x, y, o) improves
classification performance. It is done by dividing each
response rsk(x, y, o) by the local mean response averaged
over all orientations pooled in a neighborhood with the
same size as the Gabor filter. We only perform local
normalization for sketch features.

For simplicity, we use a fixed scale of Gabor filters
with size 17 by 17 pixels when computing sketch, texture
and flatness features. In total 16 orientations of Gabor
sine/cosine filters are used. The classification perfor-
mance of HIT can be further improved by utilizing
multiple scales of Gabor filters.

INRIA person. In Figure 14 we compare HIT with
HoG [1] on INRIA person dataset. The left sub-figure
of Figure 14 corresponds to training using all 2416

standard small training size

Fig. 14: Comparison on INRIA person dataset using FPPW
(horizontal axis) and miss rate (vertical axis).

Fig. 15: False positives (top row) and miss detections (bottom
row) of HIT on INRIA person testing examples. The matched
template is overlayed on each image.

standard small training size

Fig. 16: Comparison on VOC2007 horse using precision-recall.

training positives, and the right sub-figure corresponds
to training with only the first 100 positive examples. The
negative patches are sampled according to the descrip-
tion at the project page of [1]. Both positive and negative
image patches are of size 134 by 70 pixels, and they
are cropped from original images before feature maps
are computed from them. In this way, we make sure
that boundary effect is not used unfairly in favor of any
training algorithm. Following [1], we use the metric of
miss rate plotted against the logarithm of FPPW (false
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standard small training size

Fig. 17: Comparison on VOC2007 bike using precision-recall.

category template matching
AUC of

HIT

AUC of

HoG

Chair 0.945 .959

Dollar
bill

0.990 .999

Dragonfly 0.983 .980

Faces 0.985 .994

Grand
piano

0.978 .984

Inline
skate

0.997 .973

Ketch 0.966 .947

Rooster 0.947 .909

Scissors 0.976 .968

1
Fig. 18: Learned templates on selected categories in Caltech-101
and the one-vs-all classification accuracy measured by AUC
(area under ROC curve) on test images.

positive per window). The lower curve indicates smaller
miss rate and better performance. In the standard setting
of training size, HIT is on par with HoG and performs
much better than HoG at very low false positive rate
(e.g. 10−6). While using a small training size, HIT has
a lower miss rate than HoG for the whole range of
FPPW. Figure 15 shows top false positives and miss
detections when using HIT to detect persons. Most of
false positives have person-like contour in the clutter;
while most miss detections correspond to unfamiliar
pose or large occlusion.

PASCAL VOC 2007. In Figure 16 and 17, we compare
with HoG using precision-recall curves on two Pascal
VOC2007 categories: bike and horse. Similar to the IN-
RIA person experiment, we use two settings of training
sample sizes. For standard training size (the left sub-
figures in Figure 16 and 17 ), we use all the 241 horse and
139 bike images in TRAINVAL. For small training size
(the right sub-figures), we only use the first 20 positive
examples. The images in TEST (232 horse and 221 bike
images) are used as testing positives. We collect the
positive examples by cropping a square patch around
the bounding box annotation with a 10% margin and
resizing them to 150x150 pixels. For negative examples,
we use 150x150 patches cropped from background im-

ages as in our INRIA person experiment. It is observed
that the performance of HIT is on par with HoG using all
training positives. While using fewer training examples,
HIT wins over HoG with a big margin.

Caltech-101. For this dataset, the HITs are learned in a
translational invariant fashion: during template learning,
a hidden variable that accounts for unknown object
location needs to be inferred for each image. For every
category, we perform 10 EM iterations with a simple
initialization that all objects are located in the center.
To deal with different aspect ratios of the images, we
“inscribe” all images inside a square of 150 by 150
pixels with coinciding centers. Figure 18 lists a subset
of learned templates, with 15 training images per cate-
gory. For illustration purpose we only show the sketch
features, and their detections on example images. AUC is
shown on the right with comparison to HoG feature. The
translational invariant template is able to detect itself
and find its detailed correspondences in images, despite
object deformation and uncertain location (e.g. faces).

6 DISCUSSION
In this paper, we present a framework for learning
a fully generative representation, hybrid image tem-
plates, which integrate sketch, texture, flatness and color
patches for image modeling. A key advantage of this
model, in comparison to previous Gibbs models in lan-
guage modeling [18] and texture modeling [19], is that it
has a much lower computational complexity due to two
properties: i) The four types of patches are prototyped
into various subspaces (ε-balls) and then projected into
1D response r; and ii) the selected patches are mostly
independent of each other and thus are factorized in the
model so that the parameters and normalizing constants
can be computed from a small number of examples. As
the comparison of heterogeneous multi-scale features is
performed on the relative frequencies of features (i.e.
the likelihood ratio, p/q) between positive examples and
background examples, we make sure all features are
compared on the same physical unit (number of bits)
in the information projection framework. For classifica-
tion, the proposed HIT model has a sparser representa-
tion than many state-of-art methods (e.g. [1], [13]) and
demonstrates good performances on par with state-of-
art methods on commonly used benchmarks, especially
when the training sample size is small.

The success of HIT relies on the assumption that ob-
jects have a stable configuration with limited structural
variation, so that the object can be roughly aligned in
the training examples. In our on-going work, we are
learning part-based hierarchical models on the HIT con-
figurations to account for explicit structural variabilities
within each category.
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