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Hierarchical Human Semantic Parsing with
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Abstract—Modeling the human structure is central for human parsing that extracts pixel-wise semantic information from images. We
start with analyzing three types of inference processes over the hierarchical structure of human bodies: direct inference (directly
predicting human semantic parts using image information), bottom-up inference (assembling knowledge from constituent parts), and
top-down inference (leveraging context from parent nodes). We then formulate the problem as a compositional neural information
fusion (CNIF) framework, which assembles the information from the three inference processes in a conditional manner, i.e.,
considering the confidence of the sources. Based on CNIF, we further present a part-relation-aware human parser (PRHP), which
precisely describes three kinds of human part relations, i.e., decomposition, composition, and dependency, by three distinct relation
networks. Expressive relation information can be captured by imposing the parameters in the relation networks to satisfy specific
geometric characteristics of different relations. By assimilating generic message-passing networks with their edge-typed, convolutional
counterparts, PRHP performs iterative reasoning over the human body hierarchy. With these efforts, PRHP provides a more general
and powerful form of CNIF, and lays the foundation for more sophisticated and flexible human relation patterns of reasoning.
Experiments on five datasets demonstrate that our two human parsers outperform the state-of-the-arts in all cases.

Index Terms—Human Parsing, Hierarchical Model, Relation Reasoning, Graph Neural Network.
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1 INTRODUCTION

HUman parsing, which segments human bodies into
semantic parts (e.g., arms, legs, etc.), is a crucial yet

challenging task for fine-grained human body configuration
analysis in 2D monocular images. It has attracted tremen-
dous attention in the literature, as it finds a wide spectrum
of human-centric applications, such as surveillance analysis,
and human-robot interaction, etc.

Human bodies present a highly structured hierarchy and
body parts inherently interact with each other. Thus the
central problem in human parsing is how to model the
structures. Though recent human parsers have made re-
markable progress, such problem is far from solved. Specif-
ically, some representative ones built upon well-designed
deep learning architectures for semantic segmentation (e.g.,
fully convolutional networks (FCNs) [3], DeepLab [4], etc.),
failing to utilize the rich structures in this task. Some others
only leverage extra human joints to constrain body con-
figurations [5]–[8], causing them suffer from trivial struc-
tural information, not to mention the need of extra pose
annotations. In this paper, we explore a third direction: to
exploit the hierarchical nature of the human body structure
as shown in Fig. 1(a-c). Here we solve a slightly augmented
problem: besides only segmenting the fine-grained semantic
parts (leaf nodes in the human structural hierarchy), we find
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Fig. 1. With the hierarchical human body representation (b), we explore
structures for complete human semantic understanding (c). Here and

indicate dependency and (de-)compositional relations, respectively.
We first propose a compositional neural information fusion (CNIF)
based parser (d), which fuses information from three sources, i.e., direct

, bottom-up , and top-down processes, to infer each part. For clarity,
we only show the information fusion of lower-body node. We further
develop a more powerful part-relation aware human parser (PRHP)
(e), which isequipped with three distinct relation networks ( , , and

) to address specific constraints of different part relations (i.e., decom-
position, composition, and dependency). In addition, iterative inference
( ) is performed for better approximation.

the segmentation of body parts of all levels. This allows us
to make full use of human part-relations and enables a more
comprehensive human semantic understanding.

We first formulate the task as a multi-source informa-
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tion fusion procedure, based on the insight that the cross-
level information within the human body hierarchy can
assist learning and inference for each body part. This is also
evidenced by human perception studies [9], [10]; a global
shape can either precede or follow the recognition of its local
parts, and both contribute to the final recognition. In partic-
ular, as shown in Fig.1(d), we integrate information from the
following three processes for hierarchical human parsing. 1)
Direct inference (or unconscious inference ) from the input
image. For example, sometimes humans directly recognize
objects relying on intuitive understanding [11], [12]. 2) Top-
down inference ( ), which recognizes fine-grained compo-
nents from a whole entity. For example, when recognizing
small fine-grained parts, exploring contextual information
of the entire object is essential [13], [14]. 3) Bottom-up
inference ( ), which associates constituent parts to predict
upper-level nodes. When objects are partially occluded or
contain complex topologies, humans can assemble sub-parts
to assist in recognizing the entities [15]. We build a compo-
sitional neural information fusion (CNIF) framework for
these three inference processes in an end-to-end manner,
yielding a hierarchical human parser that better captures
the compositional constraints and structured semantics. In
addition, we design CNIF as a conditional fusion, i.e.,
the assembly of different information is dependent on the
confidence estimations for the sources, instead of simply
assuming all the sources are reliable. This is achieved by a
learnable gate mechanism, leading to more accurate parsing
results.

With above efforts, we further consider a more complete
set of human part relations. As shown in Fig. 1(b), we
address three different relations between human parts [16],
[17]: decompositional and compositional relations (full
line: ) between constituent and entire parts (e.g., {upper
body, lower body} and full body), and dependency relations
(dashed line: ) between kinematically connected parts
(e.g., hand and arm). In CNIF, the bottom-up and top-down
inferences are essentially to model the compositional and
decompositional relations, respectively. To enable a deeper
understanding of human structures, we further develop a
part-relation aware human parser (PRHP), which precisely
and completely describes diverse part relations, and effi-
ciently reasons structures with the prism of a message-
passing, feed-back inference scheme (Fig. 1(e)). Specifically,
three distinct relation networks ( , , and ) are designed
to explicitly satisfy the specific, intrinsic properties of the
three different part-relations, namely decomposition, com-
position, and dependency. As the human body yields a
complex, directed, and cyclic inference graph, it is desirable
to run iterative inference for optimal result approximation.
To address this issue, a modified, relation-typed convolu-
tional message passing procedure ( ) is performed over the
human body hierarchy, enabling our method to obtain better
parsing results from a global view. All the components,
i.e., the part nodes, edge (relation) functions, and message
passing modules, are fully differentiable, making PRHP
end-to-end trainable and, in turn, facilitating learning about
parts, relations, and inference algorithms. PRHP yields a
more general and powerful form of CNIF and is favored
in complete and precise part-relation modeling as well as
iterative inference for optimal result approximation.

Our main contributions are summarized as follows:
1) Through representing human bodies as a hierarchy

of multi-level semantic parts, we integrate the strong
learning capability of neural networks and the power-
ful representation ability of graph models, to efficiently
mine the inherent structures and capture human se-
mantics from a comprehensive view (§3.1).

2) We first propose a compositional neural information
fusion (CNIF) based human parsing network, which
tackles the problem as a neural information fusion
process over the human body hierarchy (§3.2). It end-
to-end incorporates the information from direct, top-
down, and bottom-up inference processes while consid-
ering the reliability of each. Thus it is able to capture the
compositional relations within human structures and
enforce high-level constraints over parsing results.

3) We further propose a part-relation aware human parser
(PRHP), which utilizes three distinct relation networks
to address specific intrinsic properties of different part
relations (i.e., decomposition, composition, and depen-
dency). In addition, relation-typed, convolutional mes-
sage passing is performed over the loopy human body
hierarchy for effective and iterative reasoning (§3.3).

We evaluate our two models on five standard human
parsing datasets (i.e., LIP [6], PASCAL-Person-Part [7],
ATR [18], Fashion Clothing [19], and PPSS [19]). Testing with
more than 20K images demonstrates the superiority over
existing methods of exploiting structural information within
human bodies (§4.2). In addition, with ablation studies for
each essential component in our parsers (§4.5), four key in-
sights are found: 1) Modeling human semantics from a hier-
archical view indeed boosts the performance. 2) Exploring
structures is valuable for human parsing. 3) Distinctly and
explicitly modeling different types of relations can better
support human structure reasoning. 4) Message passing
based feed-back inference is able to reinforce parsing results.

The present work builds upon our two earlier conference
papers [1], [2]. In [1], we proposed to tackle hierarchical
human parsing through fusing information from the direct,
top-down, and bottom-up inference processes. In [2], we
learned the compositional, decompositional, and depen-
dency relations in a type-wise manner and addressed itera-
tive reasoning. For the present paper we have consolidated
the overall technique. Moreover, through an ablation study
on multiple variants derived from the algorithm, we quan-
titatively demonstrate the effectiveness of our main points.
Last but not least, we report more extensive experimental
comparisons with recent methods, for further validation.
Our implementations have been made publicly available1.

2 RELATED WORK

Hierarchical/Graph Models in Computer Vision. Hierar-
chical/graph models are powerful for building structured
representations, which can reflect task-specific relations and
constraints. From early distributional semantic models [20],
[21], part-based models [22], [23], MRF/CRF [24], And-Or
grammar model [25], to deep structural networks [26], [27],

1. CNIF: https://github.com/ZzzjzzZ/CompositionalHumanParsing
PRHP: https://github.com/hlzhu09/Hierarchical-Human-Parsing

https://github.com/ZzzjzzZ/CompositionalHumanParsing
https://github.com/hlzhu09/Hierarchical-Human-Parsing
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hierarchical networks [14], [28], graph neural networks [29],
trainable CRF [30], etc., hierarchical/graph models have
found applications in a wide variety of core computer vision
tasks, such as object recognition [31], human parsing [32]–
[34], pose estimation [17], [35], visual dialog [36], etc., to the
extent that they are now ubiquitous in the field. Inspired
by their general success, we augment hierarchical human
semantic representations with the learning capability of neu-
ral networks. Specifically, in addition to directly inferring
segments from the image features, our CNIF further derives
two extra inference processes, i.e., bottom-up and top-down
inference, to better capture human structures. For PRHP,
compositional, decompositional, and dependency relations
are distinctively modeled and encoded into a heterogeneous
graph model to encourage more reasonable results that are
consistent with human body configurations.
Information Fusion. Our CNIF model is inspired by the
idea of fusing information from different sources to obtain
a better prediction of the target. One typical application
of this is sensor fusion, which is a broad field that we
refer the readers to [37] for a thorough treatment. Many
machine learning models can be regarded as information
fusion methods: e.g., product of experts [38], Bayesian fu-
sion, ensemble methods [39], and graphical models [40].
Motivated by this general idea, CNIF learns to adaptively
fuse the direct inference along with top-down and bottom-
up information for structured semantic reasoning.
Graph Neural Networks (GNNs). As a part of the huge
family of graph learning, GNNs have a rich history (dating
back to [41]) and became a veritable explosion in research
community over the last few years [42]. GNNs effectively
learn graph representations in an end-to-end manner, and
can be divided into two broad classes: Graph Convolutional
Networks (GCNs) and Message Passing Graph Networks
(MPGNs). The former [43]–[45] directly extends classical
CNNs to structured, non-Euclidean data. Their simple ar-
chitecture promotes their popularity, while limits their mod-
eling capability for complex structures [42]. MPGNs [29],
[46], [47] parameterize all the nodes, edges, and information
fusion steps in graph learning, leading to more complicated
yet flexible architectures.

Our PRHP falls in the second category, representing an
early attempt that explores GNNs in the area of human pars-
ing and crucially differentiates itself in two aspects. 1) Most
previous MPGNs are edge-type-agnostic (based on homoge-
neous graphs), while PRHP addresses relation-typed struc-
ture reasoning (over heterogeneous graphs) with a higher
expressive ability. 2) By replacing the Multilayer Percep-
tron (MLP) based MPGN units with convolutional counter-
parts, PRHP gains a spatial information preserving property,
which is desirable for such a pixel-wise prediction task.
Human Semantic Parsing. Over the past decade, active re-
search has been devoted towards pixel-level human seman-
tic understanding. This is because human semantic parsing
can benefit a wide range of human-related applications,
such as human communication behavior analysis [48]–[50],
human-object interaction understanding [31], [51], human
pose estimation [27], [52], to name a couple. Early ap-
proaches tended to leverage low-level image decomposi-
tions (e.g., super-pixel) [53]–[55], hand-crafted features [56],
[57], part templates [58]–[60] and human keypoints [53]–

[55], [61], and typically explored certain heuristics over
human body configurations [59], [60], [62] in by CRFs [61],
[63], structured models [54], [59], grammar models [16],
[60], [62], or generative models [64], [65]. Though achieving
impressive results, these pioneering works require a lot
of hand-designed pipelines, and suffer from the limited
representability of hand-crafted features.

With the renaissance of connectionism in the computer
vision community, recent research efforts take deep neural
networks as their main building blocks. Some pioneering
efforts revisit classic template matching strategy [18], [66],
address local and global cues [67], or use tree-LSTMs to
gather structure information [32], [33]. However, due to
the use of superpixel [32], [33], [67] or HOG feature [68],
they are fragmentary and time-consuming. Consequent at-
tempts thus follow a more elegant FCN architecture, ad-
dressing multi-level cues [69], [70], feature aggregation [19],
[71], [72], adversarial learning [73]–[75], or cross-domain
knowledge [75], [76]. To further explore inherent struc-
tures, numerous approaches [5]–[8], [71], [77] choose to
straightforward encode pose information [78], [79] into the
parsers, however, relying on off-the-shelf pose estimators
or additional annotations. Rather than these approaches ad-
dressing category-level understanding of human semantics,
a few recent human parsers are specifically designed for the
instance-aware setting [80]–[83].

The aforementioned deep human parsers generally
achieve promising results, due to the strong learning power
of neural networks [3], [4] and the availability of plentiful
annotated data [6], [7]. However, they typically need to pre-
segment images into superpixels [32], [33], which breaks
the end-to-end story and is time-consuming, or rely on
extra human landmarks [5]–[8], [77], requiring additional
annotations or pre-trained pose estimators. In contrast, we
elaborately design a compositional neural information fu-
sion framework, CNIF, which explicitly captures human
compositional structures and dynamically combines direct,
bottom-up and top-down inference modes over the hier-
archy. The overall model inherits the complementary ad-
vantages of FCNs and hierarchical models, yielding a uni-
fied, end-to-end trainable human parsing framework with a
strong learning ability, improved representational power, as
well as high processing speed. Though [34] also performs
multi-level, fine-grained parsing, it neither explores differ-
ent information flows within human body hierarchies nor
models the problem from the view of structured learning.
In addition, prior efforts largely ignore iterative inference
and seldom address explicit relation modeling, easily suf-
fering from weak expressive ability and risk of sub-optimal
results. To address these limitations, our PRHP model more
precisely models the different relations residing on human
bodies, i.e., decomposition, composition, and dependency,
and addresses iterative, spatial-information preserving in-
ference over the human body hierarchy.

3 OUR APPROACH

3.1 Problem Definition
Formally, we represent the human semantic structure as
a directed, hierarchical graph G = (V, E ,Y). As shown
in Fig. 3(a), the node set V = ∪3l=1Vl represents human
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parts in three different semantic levels, including the leaf
nodes V1 (i.e., the most fine-grained semantic parts typically
considered in prior human parsers: head, arm, hand, etc.),
two middle-level nodes V2 ={upper-body, lower-body} and
one root V3 ={full-body}2. The edge set E ⊆

(V
2

)
represents

the relations between human parts (nodes), i.e., the directed
edge e= (u, v) ∈ E links node u to v : u→v. Each node v
and each edge (u, v) are associated with feature vectors:
hv and hu,v , respectively. For each node v, we want to
infer a segmentation map yv ∈ Y that is a probability map
of its label. The groundtruth maps Y are also organized
in a hierarchical manner: Y = ∪3l=1Yl. Please note that
such a problem setting does not introduce any additional
annotation requirement, since higher-level annotations can
be obtained by simply combining the lower-level labels.

3.2 Compositional Neural Information Fusion (CNIF)
for Hierarchical Human Parsing
We formulate the task as a neural information fusion pro-
cedure. Specifically, for each node v, the prediction of yv
is computed by fusing information from three different
sources: 1) the raw input image, 2) yu for the parent node
u, and 3) yw for all the child nodes w. Next, we briefly
review different methods for information fusion modeling
that motivate our solution for human parsing.

3.2.1 Information Fusion
Information fusion refers to the process of combining infor-
mation from several sources Z = {z1, z2, · · · , zn} in order
to form a unified picture of the measured/predicted target
y. Each source provides an estimation of the target. These
sources can be the raw data x or some other quantities
that can be inferred from x. Several approaches have been
proposed to tackle this problem.
• Product of experts (PoE) [38] treats each source as an “ex-
pert”. It multiplies the probabilities and then renormalizes:

p(y|Z) =

∏n
i=1 p(y|zi)∑

y

∏n
i=1 p(y|zi)

. (1)

• Bayesian fusion. Denoting Zs={z1, z2,· · ·, zs} as the set of
the first s sources, it factorizes the posterior probability:

p(y|Z)=
p(Zn|y)p(y)

p(Zn)
=
p(y)p(z1|y)

∏n
s=2 p(Zs|Zs−1, y)

p(z1)
∏n
s=2 p(Zs|Zs−1)

. (2)

However, it is too difficult to learn all the conditional
distributions. By assuming the independence of different
information sources, we have the Naive Bayes:

p(y|Z) ∝ p(y)
∏

i
p(zi|y), (3)

which serves as an approximation of the true distribution.
• Ensemble methods. In this approach, each zi is a classifier
that predicts y. A typical ensemble method is Bayesian
voting [39], which weights the prediction of each classifier
to get the final prediction:

p(y|Z) =
∑

zi
p(y|zi)p(zi|x). (4)

The AdaBoost [84] algorithm also falls into this category.

2. As the classic settings of graph models, there is also a ‘dummy’ node in
V , used for interpreting the background class. As it does not interact with other
semantic human parts (nodes), we omit this node for concept clarity.

• Graphical models (e.g., conditional random fields). In such
models, each zi can be viewed as a node that contributes to
the conditional probability:

pθ(y|Z) = exp{
∑

i
φθi(y, zi)−A(θ)}, (5)

where A(θ) is the log-partition function that normalizes the
distribution. Computing A(θ) is often intractable, hence the
solution is usually given by approximation methods, such
as Monte Carlo methods or (loopy) belief propagation [85].

3.2.2 Compositional Neural Information Fusion
The above methods can all be viewed as ways to ap-
proximate the true underlying distribution p(y|Z), which
can be written as a function of predictions from different
information sources Z :

p(y|Z) = f(p(y|z1), p(y|z2), · · · , p(y|zn)). (6)

There are potential drawbacks to following the exact solu-
tion of one of the above methods. First, they are not entirely
consistent with each other. For example, the PoE multiplies
all p(y|zi) together, whereas ensemble methods compute
their weighted sum. Each method approximates the true
distribution in a different way and has its own tradeoff.
Second, exact inference is difficult and solutions are often
approximative (e.g., contrastive divergence [86] is used for
PoE and Monte Carlo methods for graphical models).

Therefore, instead of exactly following the computation
of one of the above methods, we leverage neural networks
to directly model this fusion function, due to their strong
ability for flexible feature learning and function approxima-
tion [87], [88]. The hope is that we can directly learn to fuse
multi-source information for a specific task. However, the
fusion network should not be learned arbitrarily without
inductive biases [89], which is the preference for structural
explanations exhibited in human reasoning processes. Here,
we exploit the compositional nature of the problem and
design the network with the following observations:
• In the compositional structure G, the final prediction
p(yv|Z) for each node v combines information from three
different sources: 1) the direct inference p(yv|x) from the raw
image input, 2) the top-down inference p(yv|yu) from the
parent node u, which utilizes the decompositional relation,
and 3) the bottom-up inference p(yv|yw), which assembles
predictions yw for all the child nodes w to leverage the
compositional relation.
• In many cases, simply fusing different estimations could
be problematic. The final decision should be conditioned on
the confidence of each information source.

Based on the above observations, we design our parser
network to learn a compositional neural information fusion:

p(yv|Z)=f( δ�vp(yv|x), δ↓up(yv|yu), δ↑wp(yv|yw) ), (7)

where the confidence δ is a learnable continuous function
with outputs from 0 to 1. The symbols �, ↓, and ↑ denote
direct, top-down, and bottom-up inference, respectively. As
shown in Fig. 2(d), this function fuses information from
the three sources in the compositional structure, taking into
account the confidence of each source. For neural network
realizations of this function, the probability terms can be
relaxed to logits, which are essentially log-probabilities.
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Fig. 2. Given an input image (a), our CNIF based human parser performs
compositional and conditional neural information fusion over the human
semantic graph (c) for hierarchical parsing (b). See §3.2.2 for details.

When carrying out such a prediction, there is one com-
putational issue. Notice that the top-down/bottom-up in-
ference relies on an estimation of the parent/child node(s).
This forms a circular dependency between a parent and its
children. To solve this, we treat the direct inference result
from the raw data as an initial estimation, upon which we
perform the top-down/bottom-up inference3. Therefore, we
decompose the algorithm into three consecutive steps:
1. Direct inference. Given the raw data as input, we assign
an estimation ŷv for each node v∈V .
2. Top-down/bottom-up inference. We estimate p(yv|ŷu)
and p(yv|ŷw)) based on ŷu and ŷw estimated in step 1.
3. Conditional information fusion. Based on the above
results, we obtain a final prediction for each node v by
y∗v=argmaxy f(δ

�
vp(yv|x), δ↓up(yv|ŷu), δ↑wp(yv|ŷw)).

This procedure motivates the design of our CNIF based
human parser, where each step above can be learned as a
module by a neural network.

3.2.3 Network Architecture
Our model stacks the following parts to form an end-to-
end system for hierarchical human parsing. The system does
not require any preprocessing and the modules are fully
convolutional, so it is highly efficient.
Direct Inference Network. This directly predicts a seg-
mentation map ŷv for each node v (a human part), us-
ing information from the image (see Fig. 3(b)). Formally,
given an input image I , a backbone network F B (i.e., a
DeepLabV3-like network, parameterized by W B) is first
employed to obtain an image representation hI (i.e., a (W,
H, C)-dimensional tenor encodes full spatial details):

image embedding: hI = F B(I;WB)∈RW×H×C . (8)

As the nodes V capture explicit semantics, a specific feature
hv for each node v is desired for more efficient repre-
sentation. However, using several different, node-specific
embedding networks will lead to a high computational cost.
To remedy this, for each l-th level, we first apply a level-
specific FCN (LSF) to describe the level-wise semantics and
contextual relations:

level-specific embedding: hLSF
l =F LSF

l (hI ;W
LSF
l )∈RW×H×c, (9)

3. For some nodes, bottom-up or top-down inference might not exist.
The terminal leaf nodes V1 do not have bottom-up inference, while the
root node V3 only has direct and bottom-up inference. For clarity of the
method description, we discuss the general case with all three sources.

where l ∈ {1, 2, 3}. Specifically, three LSFs (F LSF
1 , F LSF

2 , and
F LSF
3 ) are learned to extract three level-specific embeddings

(hLSF
1 , hLSF

2 , and hLSF
3 ). Further, for each node v, an in-

dependent channel-attention block, Squeeze-and-Excitation
(SE) [90], is applied to obtain its specific feature:

node-specific embedding: hv=F SE
v (hLSF

l ;W SE
v )∈RW×H×c, (10)

where v∈Vl (i.e., v is located in the l-th level). By explicitly
modelling the interdependencies between channels, F SE

v

allows us to adaptively recalibrate the channel-wise features
of hLSF

l to generate node-wise representations. Meanwhile,
due to its light-weight nature, we can achieve our goal with
minimal computational overhead. Then, the direct inference
network F � reads the feature and predicts the segmentation
map ŷv :

logit(ŷv|I) = F �(hv;W �)∈RW×H≥0 . (11)

Top-down Inference Network. Based on the outputs from
the direct inference network, the top-down inference pre-
dicts segmentation maps by considering human decompo-
sitional structures. Specifically, for node v, the top-down
network F ↓ leverages the initial estimation ŷu of its parent
node u as contextual information for prediction (Fig.3(c)):

logit(yv|ŷu)=F ↓(yv|ŷu;hv,W
↓)=F ↓([ŷu,hv])∈RW×H≥0 . (12)

Here, the concatenated feature [ŷu,hv] is fed into the FCN-
based F ↓, parameterized by W↓, for top-down inference.
Bottom-up Inference Network. One major difference to the
top-down network is that, for each node v, the bottom-up
network needs to gather information (i.e., ŷw ∈ RW×H×|w|

≥0 )
from multiple descendants w. Thanks to the compositional
relations between w and v, we can transform ŷw to a fixed
one-channel representation ŷw through position-wise max-
pooling PMP (across channels):

ŷw = PMP([ŷw]w∈w) ∈ RW×H≥0 , (13)

where [·] is a concatenation operation. Then, the bottom-up
network F ↑ gives a prediction according to compositional
relations (see Fig.3(d)):

logit(yv|ŷw)=F ↑(yv|ŷw;hv,W
↑)=F ↑([ŷw,hv])∈RW×H≥0 . (14)

Conditional Fusion Network. Before making the final pre-
diction, we estimate the confidence δ of each information
source using a neural gate function. For the direct inference
of a node v, we estimate the confidence by:

δ�v = σ(C�
v · CAP(hv)) ∈ [0, 1], (15)

where σ is the sigmoid function. Here, CAP stands for
channel-wise average pooling, which has been proved a sim-
ple yet effective way for capturing the global statistics of
convolutional features [90], [91]. C�

v ∈ R1×c indicates the
parameters of a small fully connected layer which maps
the c-dimensional statistic vector CAP(hv) ∈ Rc of hv into
a confidence score.

The confidence scores for the top-down and bottom-up
processes follow a similar computational framework:

δ↓u = σ(C↓u · CAP(hu)) ∈ [0, 1],

δ↑w = σ(C↑w · CAP([hw]w∈w)) ∈ [0, 1],
(16)
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Fig. 3. Illustration of our conditional neural information fusion network for hierarchical human parsing. See §3.2.3 for details.
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where C↓u ∈ R1×c and C↑w ∈ R1×c|w|. Specifically, for the
bottom-up process, we concatenate all the child node em-
beddings [hw]w∈w∈RW×H×c|w|. This means our decision is
made upon the confidence of the union of the child nodes.
Here, the confidence of a source can be viewed as a global
score or statistic for interpreting the quality of the feature,
which is learnt in an implicit manner.

Finally, for each node v, the fusion network F∪ combines
the results from the three inference networks above for final
prediction (see Fig.3(e)):

logit(yv|Z)=F∪(δ�vF
�
v , δ
↓
uF
↓
v , δ
↑
wF
↑
v ;W∪) ∈ RW×H≥0 , (17)

whereF∪:RW×H×3≥0 7→RW×H≥0 is implemented by a small FCN,
parameterized by W∪. Fig. 4 provides an illustration of
our conditional fusion process. As can be seen, δ provides
a learnable gate mechanism that suggests how much in-
formation can be used from a source (see Fig. 4(c)). It is
able to dynamically change the amount of information for
different inference processes, i.e., condition on the sources
(see Fig. 4(d)). Thus, it yields better results than statically
fusing the information with a weight-fixed fusion function
(see Fig. 4(e)). More detailed studies of our conditional and
compositional fusion can be found in §4.5.1.
Loss Function. To obtain the final l-level segmentation maps
Ŷl={ŷv∈[0, 1]W×H}v∈Vl , we apply pixel-wise soft-max (PSM)
over the logits of l-level nodes: {logit(yv|Z)∈RW×H≥0 }v∈Vl.
Thus, for each level, all the inference networks; F �, F ↓, F ↑,
and the fusion network F∪ are trained by the cross-entropy

loss LCE and the overall loss Lparsing is defined as:

Lparsing =
∑3

l=1

(
LCE(Ŷ�

l ,Yl)+LCE(Ŷ↓l ,Yl)+

LCE(Ŷ↑l ,Yl)+LCE(Ŷ∪l ,Yl)
)
.

(18)

3.3 Part-Relation Aware Human Parser (PRHP)
Our CNIF framework provides a structured human parser
that explores top-down and bottom-up context over human
configurations. However, it has two limitations. 1) CNIF
only relies on compositional and decompositional relations
which could be over generalized and simplified. It does
not seem to characterize well the diverse part relations,
especially the essential and distinct geometric constraints of
different types of relations. 2) Since information can diffuse
in different directions, the human body yields a complex,
cyclic graph topology. Hence an iterative inference is de-
sirable for optimal result approximation. However, CNIF,
as well as current arts, are built upon an immediate, feed-
forward prediction scheme.

To address the above limitations, we further propose a
part-relation aware human parser (PRHP), which explains
part relations more comprehensively and precisely (§3.3.1)
and efficiently reasons human semantics in an iterative, feed-
back fashion (§3.3.2). With the human body hierarchy G,
PRHP is trained in a graph learning scheme, also using the
full supervision from existing human parsing datasets.

3.3.1 Typed Human Part Relation Modeling
As mentioned in §1, there are diverse relations between
human parts, i.e., decomposition and composition between
constituent and entire parts, and dependency between kine-
matically connected, same-level parts. One of the core ideas
of PRHP is to model these relations in a type-wise man-
ner, which provides an explicit bias towards capturing the
specific geometric and anatomical constraints of different
relations. For parts (nodes) u and v, their relation can be
captured by the directed edge embedding hu,v , which is
formulated as:

hu,v = Rr(F r(hu),hv), (19)

where r ∈ {dec, com,dep}. F r(·) is an attention-based
relation-adaption operation, which is used to enhance the
original node embedding hu by addressing geometric char-
acteristics in relation r. The attention mechanism is favored
here as it allows trainable and flexible feature enhancement
and explicitly encodes specific relation constraints. From
the view of information diffusion [41], if there exists an
edge (u, v) that links a starting node u to a destination v,
this indicates v should receive incoming information (i.e.,
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Ŷ(t)3 Y3

Fig. 5. Our PRHP model for hierarchical human parsing during training (§3.3). The main components in the flowchart are marked by (a)-(h).

hu,v) from u. Thus, we use F r(·) to make hu better accom-
modate the target v. Rr is edge-type specific, employing
the more tractable feature F r(hu) in place of hu, so more
expressive relation feature hu,v for v can be obtained and
further benefit the final parsing results. In this way, we learn
more sophisticated and impressive relation patterns within
human bodies.
Decompositional Relation Modeling. Decompositional re-
lations (full line: in Fig. 5(a)) are represented by those
vertical edges starting from parent nodes to corresponding
child nodes in the human body hierarchy G. For example,
a parent node full-body can be separated into {upper-body,
lower-body}, and upper-body can be decomposed into {head,
torso, upper-arm, lower-arm}. Formally, for a node u, let us
denote its child node set as Cu. Our decompositional relation
network Rdec aims to learn the rule for ‘breaking down’ u
into its constituent parts Cu (Fig.6):

hu,v=Rdec(F dec(hu),hv), v ∈ Cu,
F dec(hu)=hu � attdec

u,v(hu).
(20)

‘�’ indicates the attention-based feature enhancement oper-
ation, and attdec

u,v(hu)∈[0, 1]W×H produces an attention map.
For each sub-node v∈Cu of u, attdec

u,v(hu) is defined as:

attdec
u,v(hu)=PSM([φdec

v (hu)]v∈Cu)=
exp(φdec

v (hu))

Σv′∈Cuexp(φdec
v′ (hu))

, (21)

where PSM(·) stands for pixel-wise soft-max, ‘[·]’ represents
the channel-wise concatenation, and φdec

v (hu) ∈ RW×H

computes a specific significance map for v. By making

Eq.20: hu,v=Rdec(F dec(hu),hv)

hu

hu,v

F dec(hu)

attdec
u,v

(a) (b)

Cu

parent
node

Fig. 6. Illustration of our decompositional relation modeling (§3.3.1).
(a) Decompositional relations between the upper-body node (u)
and its constituents (Cu). (b) With the decompositional attentions
{attdec

u,v(hu)}v∈Cu , F dec learns how to ‘break down’ the upper-body
node and generates more tractable features for its constituents. In the
relation adapted feature F dec(hu), the responses from the background
and other irrelevant parts are suppressed.

Eq.23:
hu,v=Rcom(F com(hu),hv)

huhu′

hu,v
u′

F com(hu)F com(hu′) attcom
v

(a) (b)
[hu′,hu]

Cv

parent
node

Fig. 7. Illustration of our compositional relation modeling (§3.3.1). (a)
Compositional relations between the lower-body node (v) and its con-
stituents (Cv). (b) The compositional attention attcom

v ([hu′ ,hu]) gath-
ers information from all the constituents Cv and lets F com enhance all the
lower-body related features of Cv .

∑
v∈Cuatt

dec
u,v = 1, {attdec

u,v(hu)}v∈Cu forms a decomposi-
tional attention mechanism, i.e., allocates disparate atten-
tions over hu. To recap, the decompositional attention, con-
ditioned on hu, lets u pass separate high-level information
to different child nodes Cu (see Fig. 6(b)). Here attdec

u,v(·)
is node-specific and separately learnt for the three entire
nodes in V2 ∪ V3, namely full-body, upper-body and lower-
body. A subscript u,v is added to address this point. In
addition, for each parent node u, the groundtruth maps
YCu = {yv}v∈Cu ∈ {0, 1}W×H×|Cu| of all the child nodes Cu
can be used as supervision signals to train its decompositional
attention {attdec

u,v(hu)}v∈Cu ∈ [0, 1]W×H×|Cu|:

Ldec =
∑

u∈V2∪V3
LCE

(
{attdec

u,v(hu)}v∈Cu ,YCu
)
. (22)

Compositional Relation Modeling. In the human body
hierarchy G, compositional relations are represented by ver-
tical, downward edges. To address this type of relations, we
design a compositional relation network Rcom as (Fig.7):

hu,v=Rcom(F com(hu),hv), u ∈ Cv,
F com(hu)=hu�attcom

v ([hu′ ]u′∈Cv ).
(23)

Here attcom
v : RW×H×c×|Cv| 7→ [0, 1]W×H is a compositional

attention, implemented by a 1×1 convolutional layer. The
rationale behind such a design is that, for a parent node
v, attcom

v gathers statistics of all the child nodes Cv and
is used to enhance each sub-node feature hu. As attcom

v

is compositional in nature, its enhanced feature F com(hu) is
more “friendly” to the parent node v, compared to hu. Thus,
Rcom is able to generate more expressive relation features by
considering compositional structures (see Fig.7(b)).
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For each parent node v ∈ V2 ∪ V3, with its groundtruth
map yv ∈ {0, 1}W×H , the compositional attention for all its
child nodes Cv is trained by minimizing the following loss:

Lcom =
∑

v∈V2∪V3
LCE

(
attcom

v ([hu′ ]u′∈Cv ), yv
)
. (24)

Dependency Relation Modeling. In G, dependency rela-
tions are represented as horizontal edges (dashed line:
in Fig. 5(a)), describing pairwise, kinematic connections be-
tween human parts, such as (head, torso), (upper-leg, lower-
leg), etc. Two kinematically connected human parts are
spatially adjacent, and their dependency relation essentially
addresses the context information. For a node u, with its
kinematically connected siblings Ku, a dependency relation
network Rdep is designed as (Fig. 8):

hu,v = Rdep(F dep(hu),hv), v ∈ Ku,
F dep(hu) = F cont(hu)�attdep

u,v

(
F cont(hu)

)
,

(25)

where F cont(hu) ∈ RW×H×c is used to extract the context
of u, and att

dep
u,v

(
F cont(hu)

)
∈ [0, 1]W×H is a dependency

attention that produces an attention for each sibling node v,
conditioned on u’s context F cont(hu). Specifically, inspired
by the non-local self-attention [92], [93], the context extraction
module F cont is designed as:

F cont(hu) = τ(hIA
>) ∈ RW×H×c,

A = h′u
>
W Ah′I ∈ R(WH)×(WH),

(26)

where h′u ∈ R(c+8)×(WH) and h′I ∈ R(C+8)×(WH) are node
(part) and image representations augmented with spatial
information, respectively, flattened into matrix formats. The
last eight channels of h′u and h′I encode spatial coordinate
information [94], where the first six dimensions are the
normalized horizontal and vertical positions, and the last
two dimensions are the normalized width and height in-
formation of the feature, 1/W and 1/H. W A∈R(c+8)×(C+8)

is learned as a linear transformation based node-to-context
projection function. The node feature h′u, used as a query
term, retrieves the reference image feature h′I for its context
information. As a result, the affinity matrix A stores the at-
tention weight between the query and reference at a certain
spatial location, accounting for both visual and spatial infor-
mation. Then, u’s context is collected as a weighted sum of
the original image feature hI with column-wise normalized
weight matrix A>:hIA

>∈RC×(WH). A 1×1 convolution based
linear embedding function τ :RW×H×C 7→RW×H×c is applied
for feature dimension compression, i.e., to make the channel
dimensions of different edge embeddings consistent.

For each sibling node v∈Ku of u, attdep
u,v is defined as:

attdep
u,v

(
F cont(hu)

)
= PSM

(
[φdep
v (hu)]v∈Ku

)
. (27)

Here φdep
v (·)∈RW×H gives an importance map for v, using

a 1×1 convolutional layer. Through the pixel-wise soft-max
operation PSM(·), we enforce

∑
v∈Ku

att
dep
u,v = 1, leading to

a dependency attention mechanism which assigns exclusive
attentions over F cont(hu), for the corresponding sibling
nodes Ku. Such a dependency attention is learned via:

Ldep =
∑

u∈V1∪V2
LCE

(
{attdep

u,v(hu)}v∈Ku ,YKu

)
, (28)

where YKu
∈ [0, 1]W×H×|Ku| stands for the groundtruth maps

{yv}v∈Ku
of all the sibling nodes Ku of u.

Eq.25:
hu,v = Rdep(F dep(hu),hv)

hu hI

F dep(hu)F cont(hu)

att
dep
u,v

(a) (b)

Ku

sibling
node

Fig. 8. Illustration of our dependency relation modeling (§3.3.1). (a)
Dependency relations between the upper-body node (u) and its siblings
(Ku). (b) The dependency attention {attdep

u,v

(
F cont(hu)

)
}v∈Ku, derived

from u’s contextual information F cont(hu), gives separate importance
for different siblings Ku.

3.3.2 Iterative Inference over the Human Body Hierarchy

Human bodies present a hierarchical structure that yields
directed and cyclic inference graphs. For such prob-
lems, approximate iterative inference algorithms are often
adopted [40], [41]. Compared with the feed-forward net-
work architectures adapted in prior arts, iterative algorithms
could offer a more favorable solution in such a structured
setting, i.e., the node representation should be updated itera-
tively by aggregating the messages from its neighbors; after
several iterations, the representation can approximate the
optimal results [41]. The iterative algorithm can be achieved
by a parametric message passing process, which is defined
in terms of a message function M and node update function
U , and runs T steps. For each node v, the message passing
process recursively collects information (messages) mv from
the neighbors Nv to enrich the node embedding hv :

m(t)
v =

∑
u∈Nv

M(h(t−1)
u ,h(t−1)

v ),

h(t)
v = U(h(t−1)

v ,m(t)
v ),

(29)

where h(t)
v stands for v’s state in the t-th iteration. Recurrent

neural networks are typically used to address the iterative
nature of the update function U .

Inspired by previous message passing algorithms, our
iterative algorithm is designed as (Fig.5(e)-(f)):

m(t)
v =

∑
u∈Pv

h(t−1)
u,v︸ ︷︷ ︸

decomposition

+
∑

u∈Cv
h(t−1)
u,v︸ ︷︷ ︸

composition

+
∑

u∈Kv

h(t−1)
u,v︸ ︷︷ ︸

dependency

,
(30)

h(t)
v =UconvGRU(h(t−1)

v ,m(t)
v ), (31)

where the initial state h
(0)
v is obtained by Eq. 10. Here, the

message aggregation step (Eq. 30) is achieved by per-edge
relation function terms, i.e., node v updates its state hv

by absorbing all the incoming information along different
relations. As for the update function U in Eq. 31, we use a
convGRU [95], which replaces the fully-connected units in
the original MLP-based GRU with convolution operations,
to describe its repeated activation behavior and address the
pixel-wise nature of human parsing, simultaneously.
Loss function: In each step t, to obtain the predictions Ŷ(t)

l =

{ŷ(t)v ∈ [0, 1]W×H}v∈Vl of the l-th layer nodes Vl, we apply
a convolutional readout function O: RW×H×c 7→RW×H over
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{h(t)
v }v∈V ( in Fig. 5(g)), and pixel-wise soft-max (PSM) for

normalization:

Ŷ(t)
l = {ŷ(t)v }v∈Vl = PSM

(
[O(h(t)

v )]v∈Vl
)
. (32)

Given the hierarchical human parsing results {Ŷ(t)
l }3l=1

and corresponding groundtruths {Yl}3l=1, the learning task
in the iterative inference can be posed as the minimization
of the following loss (Fig.5(h)):

L(t)
parsing =

∑3

l=1
L(t)

CE(Ŷ(t)
l ,Yl). (33)

Considering Eqs. 22, 24, 28, and 33, the overall loss is defined
as:

L =
∑T

t=1

(
L(t)

parsing + α(L(t)
com + L(t)

dec + L(t)

dep)
)
, (34)

where the coefficient α is empirically set as 0.1. We set the
total inference time T = 2 and study how the performance
changes with the number of inference iterations in §4.5.2.

In the supplementary material, we provide pseudo-code
descriptions for our proposed two parsers.

3.4 Implementation Details
3.4.1 CNIF based Human Parser
Backbone Network. Our feature extraction network F B in
Eq. 8 uses the convolutional blocks of ResNet101 [96]. The
stride is set to 16, i.e., the resolution of the output is 1/16
of that of the input, for high computational efficiency. In
addition, the ASPP module [97] is applied for extracting
more powerful features with multi-scale context. The ASPP-
enhanced feature is compressed by a 1× 1 convolutional
layer with ReLU activation. The compressed 512-d feature is
further ×2 upsampled and element-wisely added with the
feature from the second convolutional block of ResNet101,
to encode more spatial details. Thus, given an input image
I the feature extraction network F B produces a 512-d image
representation hI whose spatial dimensions are 1/8 of I .
Node Embedding. We implement F LSF

l (Eq. 9) using a 3×
3 convolutional layer with Batch Normalization (BN) and
ReLU activation, whose parameters are shared by all the
nodes located in the l-th level. This is used for extracting
specific features {hLSF

1 ,hLSF
2 ,hLSF

3 } for the three semantic-
levels. For each node v, an independent SE [90] block, F SE

v in
Eq.10, is further applied to extract its specific embedding hv

with an extremely light-weight architecture. In addition, we
set the channel size of level-specific embeddings and node
features c=64 to maintain high computational efficiency.
Direct Inference Network. In Eq. 11, the direct inference
network takes node embeddings as inputs and predicts
segmentation maps. F � is implemented by a stack of three
1×1 convolutional layers.
Top-down/Bottom-up Inference Network. The architec-
tures of the top-down F ↓ (Eq.12) and bottom-up F ↑ (Eq.14)
inference networks are very similar, and only differ in their
strategies of processing the input features (see Eq. 13). Both
are achieved by three cascaded convolutional layers, with
convolution sizes of 3×3, 3×3 and 1×1, respectively.
Information Fusion Network. F∪ in Eq.17 consists of three
1×1 convolutional layers with ReLU activations for non-
linear mapping, where the first two aim to aggregate the
information from different sources, while the final one is to
generate the final prediction.

3.4.2 PRHP Model
Relation Networks.Each typed relation networkRr in Eq.19
concatenates the relation-adapted feature F r(hu) from the
source node u and the destination node v’s feature hv as
the input, and outputs the relation representations: hu,v=
Rr([F r(hu),hv]). Rr:RW×H×2c 7→RW×H×c is implemented by
a 3×3 convolutional layer with ReLU nonlinearity.
Iterative Inference. In Eq. 31, the update function UconvGRU
is implemented by a convolutional GRU with 3×3 convo-
lution kernels. The readout function O in Eq. 32 applies a
1×1 convolution operation over the node embeddings. In
addition, before sending a node feature h(t)

v intoO, we use a
light-weight decoder (built using a principle of upsampling
the node feature and merging it with the low-level feature of
the backbone network) that outputs the segmentation mask
with 1/4 the spatial resolution of the input image.

All the units of our PRHP model are built on convolution
operations, leading to spatial information preservation.

4 EXPERIMENTS

4.1 Experimental Settings

Datasets. We perform experiments on the following datasets:
• LIP [6] has 50,462 single-person images with elaborate

pixel-wise annotations of 19 part categories (e.g., hair,
face, left-/right-arms, left-/right-legs, left-/right-shoes, etc.). The
images are divided into 30,462 samples for training, 10,000
for validation and 10,000 for testing.

• PASCAL-Person-Part [7] contains 3,533 multi-person im-
ages with challenging poses and viewpoints (1,716 for
training and 1,817 for testing). It provides careful pixel-
wise annotations for six body parts (i.e., head, torso, upper-
/lower-arms, and upper-/lower-legs).

• ATR [18] includes 7,700 single-person images (6,000 for
training, 700 for validation and 1,000 for testing), anno-
tated at pixel-level with 17 categories, e.g., hat, sunglass,
face, upper-clothes, pants, left-/right-arms, left-/right-legs, etc.

• Fashion Clothing [19] consists of Colorful Fashion Pars-
ing [53], Fashionista [54], and Clothing Co-Parsing [55]. It
is more concerned with human clothing details, including
17 categories (e.g., glass, hair, pants, shoes, shirt, upper-
clothes, skirt, scarf, socks, etc.). It has 4,371 images in total
(3,934 for training, and 437 for testing).

• PPSS [68] has 3,673 samples, collected from 171 surveil-
lance videos containing diverse general challenges (i.e.,
occlusion, illumination variation) in real-word scenes.
PPSS is divided into 1,781 and 1,892 images for training
and testing, respectively. Pixel-wise annotations for hair,
face, upper-/lower-clothes, arm, and leg are provided.

Evaluation Metrics. For LIP, following its standard pro-
tocol [71], we report pixel accuracy, mean accuracy and
mean Intersection-over-Union (mIoU). For PASCAL-Person-
Part, following conventions [7], [70], [74], the performance is
evaluated in terms of mIoU. For ATR and Fashion Clothing,
we report five metrics as [19] does, including pixel accuracy,
foreground accuracy, average precision, recall, and F1-score.
Training. Our method is implemented on PyTorch and
trained on four NVIDIA Tesla V100 GPUs with a 32GB
memory per-card. During training, the weights of the
backbone network are loaded from ImageNet pre-trained
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TABLE 1
Comparison results on LIP val [6]. † indicates extra pose information
used. (The two best scores are marked in red and blue, respectively.

These notes are the same for Tables 2,3,4, and 5.)

Method pixAcc. Mean Acc. Mean IoU
SegNet [100] 69.04 24.00 18.17

FCN-8s [3] 76.06 36.75 28.29
DeepLabV2 [4] 82.66 51.64 41.64
Attention [69] 83.43 54.39 42.92

†Attention+SSL [6] 84.36 54.94 44.73
DeepLabV3+ [101] 84.09 55.62 44.80

ASN [102] - - 45.41
†SSL [6] - - 46.19

MMAN [74] 85.24 57.60 46.93
†SS-NAN [71] 87.59 56.03 47.92
HSP-PRI [103] 85.07 60.54 48.16
†MuLA [8] 88.5 60.5 49.3

PSPNet [99] 86.23 61.33 50.56
CE2P [82] 87.37 63.20 53.10

BraidNet [104] 87.60 66.09 54.42
CNIF (Ours) 88.03 68.80 57.74

PRHP (Ours) 89.05 70.58 59.25

ResNet101 [96]. We train our model on the five afore-
mentioned datasets with their respective training samples,
separately. For data preparation, following [82], [98], we
apply data augmentation techniques for all the training
samples, e.g., scaling, cropping and left-right flipping. The
random scale is set from 0.5 to 2.0, while the crop size
is set to 473×473. For optimization, we adopt SGD with
a momentum of 0.9, and weight decay of 0.0005. For the
learning rate, we use the ‘poly’ learning rate schedule [4],
[99], lr=base lr×(1− iters

total iters )
power, in which power=0.9

and base lr=0.007. The total iters is epochs× batch size,
where batch size=40 and epochs=150.
Testing. All the testing procedures are carried out on a
single NVIDIA TITAN Xp GPU with 12GB memory. For
each test sample, we set the long side of the image to
473 pixels and maintain the original aspect ratio. Following
conventions [8], [99], we average the per-pixel classifica-
tion scores at multi-scales with flipping, i.e., the scale is 0.5
to 1.5 (in increments of 0.25) times the original size.

4.2 Quantitative Results

We compare the proposed two parsers with several strong
baselines on the five aforementioned challenging datasets.
Note that a recent method [76] is not included, as it is simul-
taneously trained on three datasets (i.e., PASCAL-Person-
Part [7], ATR [18], and CIHP [98]) with transfer learning.
LIP [6]. LIP is a gold standard benchmark for human pars-
ing. We compare our method with 15 state-of-the-arts on
LIP val set in Table 1. We first find that general semantic
segmentation methods [3], [4], [100], [101] tend to perform
worse than specifically designed human parsers. This in-
dicates the importance of reasoning human structures in
this problem. In addition, though recent human parsers
gain impressive results, our two models still outperform
all the competitors by a large margin. For instance, our
CNIF based parser achieves a huge boost in average IoU
(3.32% better than the second best method, BraidNet [104]
and 4.64% better than the third best, CE2P [82]). In terms of
pixAcc., mean Acc., and mean IoU, our PRHP model further
surpasses CNIF by 1.02%, 1.78% and 1.51%, respectively.

TABLE 2
Per-class comparison results on PASCAL-Person-Part test [7].

Method Head Torso U-Arm L-Arm U-Leg L-Leg B.G. Ave.
HAZN [70] 80.79 59.11 43.05 42.76 38.99 34.46 93.59 56.11

Attention [69] 81.47 59.06 44.15 42.50 38.28 35.62 93.65 56.39
LG-LSTM [33] 82.72 60.99 45.40 47.76 42.33 37.96 88.63 57.97

†Attention+SSL [6] 83.26 62.40 47.80 45.58 42.32 39.48 94.68 59.36
Attention+MMAN [74] 82.58 62.83 48.49 47.37 42.80 40.40 94.92 59.91

Graph LSTM [32] 82.69 62.68 46.88 47.71 45.66 40.93 94.59 60.16
†SS-NAN [71] 86.43 67.28 51.09 48.07 44.82 42.15 97.23 62.44

Structure LSTM [105] 82.89 67.15 51.42 48.72 51.72 45.91 97.18 63.57
Joint [7] 85.50 67.87 54.72 54.30 48.25 44.76 95.32 64.39

DeepLabV2 [4] - - - - - - - 64.94
†MuLA [8] 84.6 68.3 57.5 54.1 49.6 46.4 95.6 65.1
PCNet [34] 86.81 69.06 55.35 55.27 50.21 48.54 96.07 65.90

Holistic [80] 86.00 69.85 56.63 55.92 51.46 48.82 95.73 66.34
WSHP [5] 87.15 72.28 57.07 56.21 52.43 50.36 97.72 67.60

DeepLabV3+ [101] 87.02 72.02 60.37 57.36 53.54 48.52 96.07 67.84
SPGNet [106] 87.67 71.41 61.69 60.35 52.62 48.80 95.98 68.36

PGN [98] 90.89 75.12 55.83 64.61 55.42 41.57 95.33 68.40
CNIF (Ours) 88.02 72.91 64.31 63.52 55.61 54.96 96.02 70.76

PRHP (Ours) 89.73 75.22 66.87 66.21 58.69 58.17 96.94 73.12

TABLE 3
Comparison results on ATR test [18].

Method pixAcc. F.G. Acc. Prec. Recall F-1
Yamaguchi [54] 84.38 55.59 37.54 51.05 41.80

Paperdoll [61] 88.96 62.18 52.75 49.43 44.76
M-CNN [66] 89.57 73.98 64.56 65.17 62.81

ATR [18] 91.11 71.04 71.69 60.25 64.38
DeepLabV2 [4] 94.42 82.93 78.48 69.24 73.53

PSPNet [99] 95.20 80.23 79.66 73.79 75.84
Attention [69] 95.41 85.71 81.30 73.55 77.23

DeepLabV3+ [101] 95.96 83.04 80.41 78.79 79.49
Co-CNN [67] 96.02 83.57 84.95 77.66 80.14

LG-LSTM [33] 96.18 84.79 84.64 79.43 80.97
TGPNet [19] 96.45 87.91 83.36 80.22 81.76
CNIF (Ours) 96.26 87.91 84.62 86.41 85.51

PRHP (Ours) 96.84 89.23 86.17 88.35 87.25

We would also like to mention that our parsers do not use
additional pose [5]–[8] or edge [82] information.
PASCAL-Person-Part [7]. In Table 2, we compare our
models against 17 recent methods on PASCAL-Person-
Part test. From the results, we can again see that our
approaches outperform previous methods across the vast
majority of classes and on average. Specifically, our CNIF
and PRHP outperforms the prior best, PGN [98], by 2.36%
and 4.72%, respectively, in terms of mIoU. Such performance
gains are particularly impressive considering that improve-
ment on this dataset is very challenging.
ATR [18]. Table 3 presents comparisons with 11 previous
methods on ATR test set. Note that [105] is not included
in comparison, because it makes use of extra 10,000 images
from [67] for training. Our approaches set new state-of-the-
arts for all five metrics, outperforming all other methods
by a large margin. For example, CNIF achieves an average
F1-score of 85.51%, which is 3.75% better than TGPNet [19]
and 4.54% better than LG-LSTM [33]. And our PRHP further
provides a more considerable performance gain in F1-score,
i.e., 5.49% and 6.28% higher than TGPNet [19] and LG-
LSTM [33], respectively.
Fashion Clothing [19]. The quantitative comparison results
with five competitors on Fashion Clothing test are summa-
rized in Table 4, where we take the pre-computed evaluation
from [19]. Our models surpass other competitors across all
metrics by large margins. Notably, our CNIF and PRHP
yield F1-scores of 58.12% and 60.19%, respectively, while



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

(a) Image (b) Ground-truth (c) CNIF (d) PRHP (e) DeepLabV3+ [101] (f) PGN [98] (g) SS-NAN [71]

Fig. 9. Visual comparison on PASCAL-Person-Part test [7]. Our CNIF (c) and PRHP (d) generate more accurate predictions, compared to other
famous methods [71], [98], [101] (e-g). The improved labeled results by our parser are denoted in red boxes. See §4.3 for details.

TABLE 4
Comparison results on Fashion Clothing test [19].

Method pixAcc. F.G. Acc. Prec. Recall F-1
Yamaguchi [54] 81.32 32.24 23.74 23.68 22.67

Paperdoll [61] 87.17 50.59 45.80 34.20 35.13
DeepLabV2 [4] 87.68 56.08 35.35 39.00 37.09
Attention [69] 90.58 64.47 47.11 50.35 48.68

TGPNet [19] 91.25 66.37 50.71 53.18 51.92
CNIF (Ours) 92.20 68.59 56.84 59.47 58.12

PRHP (Ours) 93.12 70.57 58.73 61.72 60.19

TABLE 5
Comparison results on PPSS test [68].

Method Head Face U-Cloth Arms L-Cloth Legs B.G. Ave.
DL [68] 22.0 29.1 57.3 10.6 46.1 12.9 68.6 35.2

DDN [68] 35.5 44.1 68.4 17.0 61.7 23.8 80.0 47.2
ASN [102] 51.7 51.0 65.9 29.5 52.8 20.3 83.8 50.7

MMAN [74] 53.1 50.2 69.0 29.4 55.9 21.4 85.7 52.1
LCPC [107] 55.6 46.6 71.9 30.9 58.8 24.6 86.2 53.5

CNIF (Ours) 67.6 60.8 80.8 46.8 69.5 28.7 90.6 60.5
PRHP (Ours) 68.8 63.2 81.7 49.3 70.8 32.0 91.4 65.3

those for TGPNet [19] is 51.92%.
PPSS [68]. Table 5 compares our methods against five
famous methods on PPSS test set. The evaluation re-
sults demonstrate that our CNIF yields an mIoU of 60.5%,
while those of MMAN [74] and LCPC [107] are 52.1%
and 53.5%, respectively. In addition, our PRHP achieves
65.3% mIoU, with substantial gains over MMAN [74] and
LCPC [107] of 13.2% and 11.8%, respectively.

4.3 Qualitative Results
Some qualitative comparison results on PASCAL-Person-
Part test are depicted in Fig. 9. We can see that our
approaches output more precise parsing results than other
competitors [71], [98], [101], despite the existence of rare
pose (2nd row) and occlusion (3rd row). In addition, with
its better understanding of human structures, our parser
gets more robust results and eliminates the interference from
the background (1st row). The last row gives a challenging
case, where our PRHP parser still correctly recognizes the
confusing parts of the person in the middle.

4.4 Runtime Comparison
Either CNIF or PRHP does not require any other pre-
/post-processing steps (i.e., over-segmentation [32], [105],

TABLE 6
Ablation study (§4.5) for CNIF model on PASCAL-Person-Part test [7].

mIoUAspects Module V1 V2 V3

CNIF direct + bottom-up + 70.76 81.62 91.31top-down + conditional fusion
Backbone direct infer. w/o hierarchy 64.14 - -

Variant

direct 65.27 77.83 88.29
direct + bottom-up 65.42 78.37 90.10
direct + top-down 69.02 78.91 88.40

direct + bottom-up + top-down 69.43 80.34 91.02

human pose [7], CRF [7]). Thus CNIF and PRHP achieve
high processing speed of 23.0fps and 12.0fps, respectively
(averaged on PASCAL-Person-Part). This is faster than or on
par with prior deep human parsers, such as Joint [7] (0.1fps),
Attention+SSL [6] (2.0fps), MMAN [74] (3.5fps), MuLA [8]
(15fps), SS-NAN [71] (2.0fps), and LG-LSTM [33] (3.0fps).

4.5 Diagnostic Experiment
To demonstrate how each component in our parsers con-
tributes to the performance, a series of ablation exper-
iments are conducted on PASCAL-Person-Part test [7]
using mIoU metric. As PRHP provides a more general and
powerful form of CNIF based parser, we first quantity the
effectiveness of each essential ingredient of CNIF (§4.5.1),
and then provide in-depth analyses of PRHP (§4.5.2). This
would better verify our main points and coincide with the
experiments in prior conference papers. The training and
evaluation followed the same protocol as in §4.1.

4.5.1 Ablation Study for CNIF based Human Parser
Table 6 shows the evaluation of our CNIF model compared
to ablated versions without certain key components. Here,
V1 denotes the automatic parts (e.g., head, leg, etc.), V3 lower-
/upper body, and V3 full body. All the variants are retrained
independently with their specific network architectures.
Hierarchical Human Semantic Parsing. Instead of only
modeling the fine-grained parts in V1 (i.e., backbone), even
directly learning to parse the whole human body hierarchy
(i.e., direct) can bring a performance gain (64.14→65.27). This
suggests that modeling the human body hierarchy leads to
a comprehensive understanding of human semantics.
Fusing Information from Different Inference Processes.
Considering the last four rows in Table 6, we can find that
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Image Ground-Truth Ours Image Ground-Truth Ours

Fig. 10. Visualizations of typical failure cases on PASCAL-Person-Part test set [7].

TABLE 7
Ablation study (§4.5) for PRHP model on PASCAL-Person-Part test [7].

Aspects Module mIoU (V1)

PRHP
full model

73.12(composition+decomposition+
dependency + 2 iterations)

Relation modeling

type-agnostic 70.37
type-specific w/o F r 71.65

decomposition relation 71.38
composition relation 69.35
dependency relation 69.43

Iterative Inference T

0 iteration 68.84
1 iteration 72.17
3 iterations 73.19
4 iterations 73.22
5 iterations 73.23

further integrating bottom-up and top-down inference pro-
vides substantial performance gain. This demonstrates the
benefit of exploiting human structures and efficient infor-
mation fusion strategies in this problem. Note that in (direct
vs. direct+bottom-up) and (direct+top-down vs. direct+bottom-
up+top-down), even for the 1st-level nodes that do not have
bottom-up inference, the training itself brings performance
gain. The reason is that the bottom-up inference explicitly
captures compositional relations and thus improves the
quality of the learnt features. Similar observations can also
be found in (direct vs. direct+top-down) and (direct+bottom-up
vs. direct+bottom-up+top-down) for the 3rd-level node. These
observations suggest the compositional information fusion
not only improves the predictions during inference but also
boosts the learning ability of our human parser model.
Conditional Information Fusion. Comparing the perfor-
mance of our full CNIF model and direct+bottom-up+top-
down baseline, we can conclude that conditionally fusing
information boosts performance, as the information from
low-quality sources can be suppressed. This also provides
a new glimpse into the information fusion mechanism over
hierarchical models.

4.5.2 Ablation Study for PRHP Model

Type-Specific Relation Modeling. We first investigate the
necessity of comprehensively exploring different relations,
and discuss the effective of our type-specific relation model-
ing strategy. Concretely, we studied five variant models, as
listed in Table 6: 1) ‘Type-agnostic’ shows the performance

when modeling different human part relations in a type-
agnostic manner: hu,v=R([hu, hv]); 2) ‘Type-specific w/o F r’
gives the performance without the relation-adaption oper-
ation F r in Eq. 19: hu,v=R

r([hu, hv]); 3-5) ‘Decomposition
relation’, ‘Composition relation’ and ‘Dependency relation’
are three variants that only consider the corresponding
single one of the three kinds of relation categories, using our
type-specific relation modeling strategy (Eq.19). Three main
conclusions can be drawn: 1) Typed relation modeling leads
to more effective human structure learning, as ‘Type-specific
w/o F r’ improves ‘Type-agnostic’ by 1.28%. 2) Exploring
different kinds of relations are meaningful, as our full model
considering all the three kinds of relations achieves the best
performance. 3) Encoding relation-specific constrains helps
with relation pattern learning as our full model is better than
the one without relation-adaption, ‘Type-specific w/o F r’.
Iterative inference: Table 6 shows the performance of our
parser with regard to the iteration step t as denoted in
Eq. 30 and Eq. 31. Note that, when t = 0, only the initial
node feature is used. It can be observed that setting T = 2
or T = 3 provided a consistent boost in accuracy of 4∼5%,
on V3, compared to T = 0; however, increasing T beyond
3 gave marginal returns in performance (around 0.1%).
Accordingly, we choose T =2 for a better trade-off between
accuracy and computation time.

4.6 Failure Case Analysis
To give a deeper insight into our methods, we present two
representative failure cases in Fig. 10. As seen, our proposed
model faces difficulties with low-quality images or dim
scenes. Besides, our method may produce inferior results for
humans at very small scales. In the future, we will therefore
focus on addressing these issues.

5 CONCLUSION

In the human semantic parsing task, structure modeling is
an essential, albeit inherently difficult, avenue to explore. In
this work, we parse human parts in a hierarchical form, en-
abling us to capture human semantics from a more compre-
hensive view. We first tackle this problem through a neural
information fusion framework that explores and combines
the information from the direct, top-down, and bottom-up
inference processes, while considering the reliability of each
process. Based on this, we further address relation model-
ing/reasoning in two aspects. First, three distinct relation
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networks are designed to precisely describe the composi-
tional/decompositional relations between constituent and
entire parts and help with the dependency learning over
kinetically connected parts. Second, to address the inference
over the loopy human structure, we make convolutional,
message passing based approximations, which enjoys the
advantages of iterative optimization and spatial information
preservation. Extensive quantitative and qualitative com-
parisons performed on five datasets demonstrate that our
methods outperform all other competitors.
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