
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Mining Interpretable AOG Representations
from Convolutional Networks via Active

Question Answering
Quanshi Zhang, Jie Ren, Ge Huang, Ruiming Cao, Ying Nian Wu, and Song-Chun Zhu

Abstract—In this paper, we present a method to mine object-part patterns from conv-layers of a pre-trained convolutional
neural network (CNN). The mined object-part patterns are organized by an And-Or graph (AOG). This interpretable AOG
representation consists of a four-layer semantic hierarchy, i.e. semantic parts, part templates, latent patterns, and neural units.
The AOG associates each object part with certain neural units in feature maps of conv-layers. The AOG is constructed with very
few annotations (e.g. 3–20) of object parts. We develop a question-answering (QA) method that uses active human-computer
communications to mine patterns from a pre-trained CNN, in order to explain features in conv-layers incrementally. During the
learning process, our QA method uses the current AOG for part localization. The QA method actively identifies objects, whose
feature maps cannot be explained by the AOG. Then, our method asks people to annotate parts on the unexplained objects, and
uses answers to discover CNN patterns corresponding to the newly labeled parts. In this way, our method gradually grows new
branches and refines existing branches on the AOG to semanticize CNN representations. In experiments, our method exhibited
a high learning efficiency. Our method used about 1/6–1/3 of the part annotations for training, but achieved similar or better
part-localization performance than fast-RCNN methods.

Index Terms—Convolutional Neural Networks, Hierarchical graphical model, Part localization

F

1 INTRODUCTION

Convolutional neural networks [23], [26], [29], [31]
(CNNs) have achieved superior performance in many
visual tasks, such as object detection and segmen-
tation. However, in real-world applications, current
neural networks still suffer from low interpretability
of their middle-layer representations and data-hungry
learning methods.

Thus, the objective of this study is to mine thou-
sands of latent patterns from the mixed representations
in conv-layers. Each latent pattern corresponds to a
constituent region or a contextual region of an object
part. We use an interpretable graphical model, namely
an And-Or graph (AOG), to organize latent patterns
hidden in conv-layers. The AOG maps implicit latent
patterns to explicit object parts, thereby explaining the
hierarchical representation of objects. We use very few
(e.g. 3–20) part annotations to mine latent patterns and
construct the AOG to ensure high learning efficiency.

We can use the AOG for part localization, i.e. in-
ferring a parse graph within the AOG to localize
object parts and their constituent regions. Another
motivation is that the hierarchical structure of the
AOG helps people understand feature representations
of a CNN. Learning an interpretable model (e.g. the

• Quanshi Zhang, Jie Ren, and Ge Huang are with the John Hopcroft
Center and MoE Key Lab of Artificial Intelligence AI Institute,
Shanghai Jiao Tong University, Shanghai, China. Ruiming Cao, Ying
Nian Wu, and Song-Chun Zhu are with the University of California,
Los Angeles, USA.

AOG) to explain CNN feature representations attracts
an increasing attention in the scope of explainable AI.

As shown in Fig. 1, compared to ordinary CNN
representations where each filter encodes a mixture
of textures and parts (evaluated by [4]), we extract
clear object-part representations from CNN features.
Our learning method enables people to model objects
or object parts on-the-fly without many human anno-
tations, thereby ensuring broad applicability.

And-Or graph representations: As shown in
Fig. 1, the AOG represents a semantic hierarchy on
the top of conv-layers, which consists of four layers,
i.e. the semantic part, part templates, latent patterns, to
CNN units. In the AOG, AND nodes represent com-
positional regions of a part, and OR nodes represent
a list of alternative template/deformation candidates
for a local region.
• Layer 1: the top semantic part node is an OR node,

whose children represent template candidates for
the part.

• Layer 2: a part template in the second layer de-
scribes a certain part appearance with a specific
pose, e.g. a black sheep head from a side view.
A part template is an AND node, which uses its
children latent patterns to encode its constituent
regions.

• Layer 3: a latent pattern in the third layer repre-
sents a constituent region of a part (e.g. an eye
in the head part) or a contextual region (e.g. the
neck region w.r.t. the head). A latent pattern is an
OR node, which naturally corresponds to a group

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Terminals Deformation
range

…

Input
image

(AND) part
template

(OR) latent
patterns

(OR) semantic
part

output

FC FC

AOG representationsMixture of patterns encoded in each filter

Filter 1

Filter 2

Filter 3

…

Objects

Latent
patterns

Fig. 1. Mining part-based AOG representations from CNN representations. (left) Each filter in a conv-layer
usually encodes a mixture of patterns, which makes conv-layer representations a black box. The same filter may
be activated by different parts of different objects. (middle) We disentangle CNN feature maps and mine latent
patterns of object parts. White lines indicate the spatial relationship between a latent pattern’s neural activation
and the ground-truth position of an object part (head). (right) We grow an AOG on the CNN to associate CNN
units with certain semantic parts (the horse head, here). Red lines in the AOG indicate a parse graph that
associates certain CNN units with a semantic part.

of units within the feature map of a certain CNN
filter. The latent pattern selects one of its children
CNN units as the configuration of the geometric
deformation.

• Layer 4: terminal nodes are CNN units, i.e. raw
activation units on feature maps of a CNN filter.

For application, the AOG maps implicit latent pat-
terns in raw CNN feature maps to explicit seman-
tic parts in a bottom-up manner. As red lines in
Fig. 1(right), the AOG infers a parse graph to localize
object parts and their constituent regions for hierar-
chical object parsing. The AOG is interpretable and
can be used for communications with human users.

Learning via active question-answering: We pro-
pose a new active learning strategy to build an AOG
with a limited number of human annotations. As
shown in Fig. 2, we use an active question-answering
(QA) process to mine latent patterns from raw feature
maps and gradually grow the AOG.

The input is a pre-trained CNN and its training
samples (i.e. object images without part annotations).
The QA method actively discovers the missing pat-
terns in the current AOG and asks human users to
label object parts for supervision.

In each step of the QA, we use the current AOG to
localize a certain semantic part among all unannotat-
ed images. Our method actively identifies object im-
ages, which cannot fit well to the AOG. I.e. the current
AOG cannot explain object parts in these images. Our
method estimates the potential gain of asking about
each of the unexplained objects, thereby determining
an optimal sequence of questions for QA. Note that
the QA is implemented based on pre-defined ontolo-
gy, instead of using open-ended questions or answers.
As in Fig. 2, the user is asked to provide five types of
answers (e.g. labeling the correct part position when

the AOG cannot accurately localize the part), in order
to guide the growth of the AOG. Given each specific
answer, our method may either refine the AOG branch
of an existing part template or construct a new AOG
branch for a new part template.

Based on human answers, we mine latent patterns
for new AOG branches as follows. We require the new
latent patterns
• to represent a region highly related to the anno-

tated object parts,
• to frequently appear in unannotated objects,
• to consistently keep stable spatial relationships

with other latent patterns.
Similar requirements were originally proposed in s-
tudies of pursuing AOGs, which mined hierarchical
object structures from Gabor wavelets on edges [50]
and HOG features [76]. We extend such ideas to
feature maps of neural networks.

The active QA process mines object-part patterns
from the CNN with limited human annotations. There
are three mechanisms to ensure the learning stability
with limited supervision.
• Instead of learning all representations from

scratch, we transfer patterns in a pre-trained C-
NN to the target object part, which boosts the
learning efficiency. Because the CNN has been
trained using numerous images, latent patterns
in the AOG are supposed to consistently describe
the same part region of different object images,
instead of over-fitting to part annotations ob-
tained during the QA process. For example, we
use the annotation of a specific tiger head to mine
latent patterns. The mined patterns are not over-
fitted to the head annotation, but represent gener-
ic appearances of different tiger heads. In this
way, we use very few (e.g. 1–3) part annotations

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Q: Is it a correct localization of the head ? Is it
a flipped head belonging to part template 1?

Part localization Appearance type

A1 Correct Correct

A2 Incorrect Correct

A3 Incorrect Incorrect

A4 Incorrect New appearance

A5 Do not contain ‐‐‐

An
no

tat
ion

s o
f

ex
ist

ing
 pa

rt
tem

pla
tes

Part annotation

1) Part template 4
2) Flipped pose

Part
template 1

Part
template 2

Part
template 3

Part
template 4

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

Different object samples

)
(I

K
L

Update part
template 4

...
Pre-trained CNN

Active QA

...

Pre-trained CNN

Active QA

...

Pre-trained CNN

...

Pre-trained CNN Pre-trained CNN

...

Questions

Answers

Fig. 2. Learning an AOG to explain a pre-trained CNN via active question-answering (QA). (left) We mine latent
patterns of object parts from the CNN, and organize such patterns into a hierarchical AOG. During the learning
process, our method automatically identifies objects whose parts cannot be well fit current part templates in
the AOG, asks about the objects, and uses the answers to mine latent patterns and grow the AOG. (right) The
learning algorithm sorts and selects objects for QA.

to extract latent patterns for each part template.
• It is important to maintain the generality of the

pre-trained CNN during the learning procedure.
I.e. we do not change/fine-tune the original con-
volutional weights within the CNN, when we
grow new AOGs. This allows us to continuously
learn new semantic parts from the same CNN,
without the model drift.

• The active QA strategy reduces the excessive us-
age of the human labor of annotating object parts
that have been well explained by the current
AOG.

In addition, we use object-level annotations for pre-
training, considering the following two facts: 1) Only
a few datasets [8], [66] provide part annotations, and
most benchmark datasets [16], [35], [45] mainly have
annotations of object bounding boxes. 2) More cru-
cially, real-world applications may focus on various
object parts on-the-fly, and it is impractical to annotate
a large number of parts for each specific task.

This paper makes the following three contributions.
1) From the perspective of object representations, we
semanticize a pre-trained CNN by mining reliable
latent patterns from noisy feature maps of the C-
NN. We design an AOG to represent the semantic
hierarchy inside conv-layers, which associates implicit
neural patterns with explicit semantic parts. Learning
an interpretable AOG model to explain CNN repre-
sentations is important in the scope of explainable AI.
2) From the perspective of learning strategies, based
on the clear semantic structure of the AOG, we
present an active QA method to learn each part tem-
plate of the object sequentially, thereby incrementally
growing AOG branches on a CNN to enrich part
representations in the AOG.
3) In experiments, our method exhibits superior per-
formance to other baselines of part localization, in
the scenario of learning models without many human
annotations. For example, our methods with 11 part

annotations outperformed fast-RCNNs with 60 anno-
tations on the Pascal VOC Part dataset.

A preliminary version of this paper appeared in [71]
and [72].

2 RELATED WORK

In this section, we will discuss recent literature on
interpreting deep neural networks and clarify relevant
issues in the learning of compositional models.

2.1 Interpreting deep neural networks

Interpreting deep neural networks has attracted more
and more attention in recent years. In general, net-
work visualization, the diagnosis of feature represen-
tations, and the semanticization of feature representa-
tions represent three typical research directions.

Network visualization: Visualization of filters in a
CNN is a direct way of exploring the pattern hidden
inside a neural unit. Lots of visualization methods
have been used in the literature. The gradient-based
visualization [38], [53], [69] and the inversion-based
method [13] represent two typical methodologies.
Gradient-based visualization estimates the input im-
age that maximizes the activation score of a neural
unit. Up-convolutional nets [13] inverts feature maps
of conv-layers to images. Unlike gradient-based meth-
ods, up-convolutional nets cannot mathematically en-
sure the visualization result reflects actual neural rep-
resentations. In recent years, [41] provided a reliable
tool to visualize filters in different conv-layers of a
CNN. Unlike network visualization, our mining part
representations from conv-layers is another choice to
interpret CNN representations.

Diagnosis of feature representations: Going be-
yond “passive” visualization, some methods “active-
ly” diagnose a pre-trained CNN to obtain an insight-
ful understanding of CNN representations. The most
typical idea is to estimate the image regions that

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

TABLE 1
Comparisons with studies of the network dissection.

Ours Gonzalez-Garcia et al. [22] Bau et al. [4]
Modeling parts

√ √ √

Modeling textures
√ √

Modeling detailed structures of objects
√

Can be used for inference
√

Annotation cost mainly 10–20 part
annotations for
each category

Part-level annotations of 10103 images
in the VOC Part dataset [8] (containing
105 parts of 16 object classes)

Pixel-level annotations of 21663
images with parts in the Borden
dataset [4]

directly contribute to the network output. Gradient-
based methods [17], [44], [47] propagate gradients of
feature maps w.r.t. the CNN loss back to the image
to estimate attribution maps. In particular, Zhou et
al. [77] proposed a method to accurately compute the
image-resolution receptive field of neural activations
in a feature map. Theoretically, the actual receptive
field of a neural activation is smaller than that com-
puted using the filter size. The accurate estimation of
the receptive field is crucial to understand a filter’s
representations.

Other studies include the analysis of semantic
meanings [59], transferability [68], feature distribu-
tions [1], [37] of convolutional filters in intermediate
layers. Network-attack methods [28], [57], [59] diag-
nosed network representations by computing adver-
sarial samples for a CNN. In particular, influence
functions [28] were proposed to compute adversarial
samples, provide plausible ways to create training
samples to attack the learning of CNNs, fix the
training set, and further debug representations of a
CNN. [30] discovered knowledge of blind spots (un-
known patterns) of a pre-trained CNN in a weakly-
supervised manner. Zhang et al. [75] developed a
method to examine representations of conv-layers and
automatically discover potential, biased representa-
tions of a CNN due to the dataset bias.

Semanticization of feature representations: Com-
pared to the diagnosis of CNN representations, se-
manticization of CNN representations is closer to the
spirit of building interpretable representations. Hu et
al. [25] designed logic rules for network outputs, and
used these rules to regularize neural networks and
learn meaningful representations. However, this study
has not obtained semantic representations in inter-
mediate layers. Some studies extracted neural units
with certain semantics from CNNs for different appli-
cations. Given feature maps of conv-layers, Zhou et
al. [77], [78] extracted scene semantics. Simon et al.
mined objects from feature maps of conv-layers [51],
and learned explicit object parts [52].

Table 1 compares our work with previous studies
of mining object parts from intermediate-layer fea-
tures [4], [22].

Unlike the above research, we aim to explore the
entire semantic hierarchy hidden inside conv-layers
of a CNN. Because the AOG structure [50], [82] is

suitable for representing the semantic hierarchy of
objects, our method uses an AOG to represent the
CNN. In our study, we use semantic-level QA to
incrementally mine object parts from the CNN and
grow the AOG. Such a “white-box” representation
of the CNN also guided further active QA. With
clear semantic structures, the AOG makes it easier to
transfer CNN patterns to other part-based tasks.

The hierarchical representation of CNN patterns
also boosts the capacity of knowledge transferring.
Previous research mainly end-to-end fine-tuned and
transferred CNN representations between different
categories [19], [68], and datasets [20]. In contrast,
we believe that a good explanation and transparent
representation of parts will create a new possibility of
transferring part features. As in [50], [81], the AOG
is suitable to represent the semantic hierarchy, which
enables semantic-level interactions between human
and neural networks.

In addition, the semanticization of feature represen-
tations also makes our study from conventional part-
detection approaches. First, most detection methods
deal with classification problems, but inspired by
graph mining [73], [74], [76], we mainly focus on
a mining problem, i.e. discovering meaningful latent
patterns to clarify CNN representations. Second, in-
stead of summarizing common knowledge from mas-
sive annotations, our method requires very limited
supervision to mine latent patterns.

2.2 Learning of compositional models with limit-
ed annotations
The labeling cost is an important issue of learning
compositional models. Many methods have been de-
veloped to learn object models in an unsupervised
or weakly supervised manner. Methods of [7], [51],
[55], [76] learned with image-level annotations with-
out labeling object bounding boxes. [9], [14] did not
require any annotations during the learning process.
[10] collected training data online from videos to in-
crementally learn models. [15], [56] discovered objects
and identified actions from language Instructions and
videos. Inspired by active learning [36], [58], [64], the
idea of learning from question-answering has been
used to learn object models [12], [46], [62]. Branson et
al. [5] used human-computer interactions to label
object parts to learn part models. Instead of directly

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

building new models from active QA, our method
uses the QA to mine AOG part representations from
CNN representations.

Modeling “objects” vs. modeling “parts”: Gen-
erally speaking, it is usually more difficult to model
object parts than to represent entire objects, when
people limit the number of human annotations. For
example, object discovery [42], [43], [51] and co-
segmentation [3] only require image-level labels with-
out object bounding boxes. Object discovery is mainly
implemented by identifying common foreground pat-
terns from the noisy background. People usually con-
sider closed boundaries and common object structure
as a strong prior for object discovery.

In contrast to objects, it is difficult to mine correct
part parsing of objects without sufficient supervision.
Up to now, there is no reliable solution to distin-
guishing semantically meaningful parts from other
potential divisions of object parts in an unsupervised
manner. In particular, some parts (e.g. the abdomen)
do not have shape boundaries to determine their
shape extent.

2.3 Active learning

Active learning aims to solve the following problem:
how to train an accurate model with minimum cost
of labeling [18]. Thus, the goal of active learning is
to select the minimum instances from the unlabeled
sample set to query from an oracle (e.g., a human).
The two widely used selection criteria are representa-
tiveness and informativeness [80].

Representativeness-based approaches aim to exploit
the cluster structure or the similarity of unlabeled
data [80]. [11], [40] applied the clustering method and
selected samples based on the clusters. [79] introduced
some methods which focused on the measures of
similarity among samples.

Approaches based on informativeness usually
choose the “most confused” samples with respect to
the classifier being used [60], [61]. [39], [48] generated
multiple classifiers and selected the unlabeled in-
stance on which the classifiers disagreed to the most.
Method of [32] selected the instance on which the
classifier was with the least confidence. [24] suggested
choosing samples based on the entropy of unlabeled
samples. They selected the sample that produced the
maximum reduction in entropy once it was labeled.
[6], [65] proposed to ask questions on each image and
used the user responses to update predictions. These
questions were also selected based on the information
gain.

Unlike the above methods, we focus on learning an
interpretable hierarchical model, and developing the
active QA to explain more features incrementally. In
the active QA process, samples are selected based on
the uncertainty of part localization.

3 METHOD

The overall objective is to sequentially minimize the
following three loss terms.

Loss = LossCNN + LossQA + LossAOG (1)

LossCNN denotes the classification loss of the CNN.
LossQA is referred as to the loss for active QA.

Given the current AOG, we use LossQA to actively
determine a sequence of questions about objects that
cannot be explained by the current AOG, and require
people to annotate bounding boxes of new object parts
for supervision.
LossAOG is designed to learn an AOG for the CNN.

LossAOG penalizes 1) the incompatibility between the
AOG and CNN feature maps of unannotated objects
and 2) part-location errors w.r.t. the annotated ground-
truth part locations.

It is essential to determine the optimization se-
quence for the three losses in the above equation.
We propose to first learn the CNN by minimizing
LossCNN and then build an AOG based on the learned
CNN. We use the active QA to obtain new part
annotations and use new part annotations to grow
the AOG by optimizing LossQA and LossAOG alterna-
tively.

Processes of learning CNNs, active QA, and learn-
ing AOGs are conducted recursively, so three terms in
Equation (1) are not optimized jointly. We introduce
details of the three losses in the following subsections.

3.1 Learning convolutional neural networks
To simplify the story, in this research, we just consider
a CNN for single-category classification, i.e. identify-
ing object images of a specific category from random
images. We use the log-logistic loss to learn the CNN.

LossCNN = EI∈I
[
Loss(ŷI , y

∗
I)
]

(2)

where ŷI and y∗I denote the predicted and ground-
truth labels of an image I . If the image I belongs to
the target category, then y∗I = +1; otherwise y∗I = −1.

3.2 Learning And-Or graphs
We are given a pre-trained CNN and its training
images without part annotations. We use an active QA
process to obtain a small number of annotations of
object-part bounding boxes, which will be introduced
in Section 3.3. Based on these inputs, in this subsec-
tion, we focus on the approach for learning an AOG
to represent the object part.

3.2.1 And-Or graph representations
Before the introduction of learning AOGs, we first
briefly overview the structure of the AOG and the
part parsing (inference) based on the AOG.

As shown in Fig. 1, an AOG represents the semantic
structure of a part at four layers.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Layer Name Node type
1 semantic part OR node
2 part template AND node
3 latent pattern OR node
4 neural unit Terminal node

In the AOG, each OR node encodes a list of alternative
appearance (or deformation) candidates as children.
Each AND node uses its children to represent its
constituent regions.

More specifically, the top node is an OR node,
which represents a certain semantic part, e.g. the head
or the tail. The semantic part node encodes some part
templates as children. Each part template corresponds
to a specific part appearance from a certain perspec-
tive. During the inference process, the semantic part
(an OR node) selects the best part template among all
template candidates to represent the object.

The part template in the second layer is an AND
node, which uses its children latent patterns to repre-
sent a constituent region or a contextual region w.r.t.
the part template. The part template encodes spatial
relationships between its children.

The latent pattern in the third layer is an OR node,
whose receptive field is a square block within the
feature map of a specific convolutional filter. The
latent pattern takes neural units inside its receptive
field as children. Because the latent pattern may ap-
pear at different locations in the feature map, the
latent pattern uses these neural units to represent its
deformation candidates. During the inference process,
the latent pattern selects the strongest activated child
unit as its deformation configuration.

Given an image I1, we use the CNN to compute
feature maps of all conv-layers on image I . Then,
we use the AOG for hierarchical part parsing. I.e.
the AOG semanticizes the feature maps and localizes
the target part and its constituent regions in different
layers.

The parsing result is illustrated as red lines in Fig. 1.
From a top-down perspective, the parsing procedure
1) identifies a part template for the semantic part; 2)
parses an image region for the selected part template;
3) for each latent pattern under the part template,
it selects a neural unit within a specific deformation
range to represent this pattern.

OR nodes: Both the top semantic-part node and
latent-pattern nodes in the third layer are OR nodes.
The parsing process assigns each OR node u with
an image region Λu and an inference score Su. Su
measures the fitness between the parsed region Λu
and the sub-AOG under u. The computation of Λu

1. Because the CNN has demonstrated its superior performance
in object detection, we assume that the target object is well detected
by the pre-trained CNN. As in [8], we regard object detection and
part localization as two separate processes for evaluation. Thus, to
simplify the learning scenario, we crop I only to contain the object,
resize it to the image size for CNN inputs, and just focus on the
part localization task to simplify the scenario of learning for part
localization.

and Su for all OR nodes shares the same paradigm.

Su = max
v∈Child(u)

Sv, Λu = Λv̂ (3)

where let u have m children nodes Child(u) =
{v1, v2, . . . , vm}. Sv denotes the inference score of the
child v, and Λv is referred to as the image region
assigned to v. The OR node selects the child with
the highest score v̂ = argmaxv∈Child(u)Sv as the true
parsing configuration. Node v̂ propagates its image
region to the parent u.

More specifically, we introduce detailed settings for
different OR nodes.
• The OR node of the top semantic part contains

a list of alternative part templates. We use top
to denote the top node of the semantic part. The
semantic part chooses a part template to describe
each input image I .

• The OR node of each latent pattern u in the
third layer naturally corresponds to a square
deformation range within the feature map of a
convolutional filter of a conv-layer. All neural
units within the square are used as deformation
candidates of the latent pattern. For simplifica-
tion, we set a constant deformation range (with
a center pu and a scale of h

3 ×
w
3 in the fea-

ture map where h and w (h = w) denote the
height and width of the feature map) for each
latent pattern. pu is a parameter that needs to be
learned. Deformation ranges of different patterns
in the same feature map may overlap. Given
parsing configurations of children neural units as
input, the latent pattern selects the child with the
highest inference score as the true deformation
configuration.

AND nodes: Each part template is an AND node,
which uses its children (latent patterns) to represent
its constituent or contextual regions. We use v and
Child(v) = {u1, u2, . . . , um} to denote the part tem-
plate and its children latent patterns. We learn the
average displacement from Λu to Λv over different
images, denoted by ∆pu, as a parameter of the AOG.
Given parsing results of children latent patterns, we
use the image region of each child node Λu to infer the
region for the parent v based on its spatial relation-
ships. Just like a deformable part model, the parsing
of v is given as

Sv=
∑

u∈Child(v)

[
Su+S

inf(Λu|Λv)
]
, Λv=f(Λu1 , . . . ,Λum) (4)

where we use parsing results of children nodes to in-
fer the parent part template v. Sinf(Λu|Λv) denotes the
spatial compatibility between Λu and Λv w.r.t. their
average displacement ∆pu. Please see the appendix
for details of Sinf(Λu|Λv).

For the region parsing of the part template v, we
need to estimate two terms, i.e. the center position
pv and the scale scalev of Λv . We learn a fixed scale

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

for each part template, which will be introduced in
Section 3.2.2. In this way, we simply implement region
parsing by computing the region position that maxi-
mizes the inference score pv = f(Λu1

,Λu2
, . . . ,Λum

) =
argmaxpv

Sv .
Terminal nodes (neural units): Each terminal node

under a latent pattern represents a deformation can-
didate of the latent pattern. The terminal node has
a fixed image region, i.e. we propagate the neural
unit’s receptive field back to the image plane as its
image region. We compute a neural unit’s inference
score based on both its neural response value and its
displacement w.r.t. its parent latent pattern. Please see
the appendix for details.

Based on the above node definitions, we use the
AOG to parse each given image I by dynamic pro-
gramming in a bottom-up manner.

3.2.2 Learning And-Or graphs
The core of learning AOGs is to distinguish reliable
latent patterns from noisy neural responses in conv-
layers and select reliable latent patterns to construct
the AOG.

Training data: Let Iobj ⊂ I denote the set of
object images of a target category. During the active
question-answering, we obtain bounding boxes of
the target object part in a small number of images,
Iant = {I1, I2, . . . , IM} ⊂ Iobj among all objects. The
other images without part annotations are denoted by
Iunant = Iobj \ Iant. In addition, the question-answering
process collects a number of part templates. Thus, for
each image I ∈ Iant, we annotate (Λ∗top, v

∗), where Λ∗top
denotes the ground-truth bounding box of the part
in I , and v∗ ∈ Child(top) specifies the ground-truth
template for the part.

Which AOG parameters to learn: We use human
annotations to define the first two layers of the AOG.
If human annotators specify a total of m different
part templates during the annotation process, corre-
spondingly, we directly connect the top node with
m part templates as children. For each part template
v ∈ Child(top), we fix a constant scale for its region
Λv . I.e. if there are n ground-truth part boxes that are
labeled for v, we compute the average scale among
the n part boxes as the constant scale scalev .

Thus, the key to AOG construction is to mine
children latent patterns for each part template v. We
need to mine latent patterns from a total of K conv-
layers. We select nk latent patterns from the k-th
(k = 1, 2, . . . ,K) conv-layer, where K and {nk} are
hyper-parameters. Let each latent pattern u in the k-th
conv-layer correspond to a square deformation range,
which is located in the Du-th slice of the conv-layer’s
feature map. pu denotes the center of the range. As
analyzed in the appendix, we only need to estimate
the parameters of Du,pu for u.

How to learn: Just like the pattern pursuing in
Fig. 1, we mine the latent patterns by estimating their

best locations Du,pu ∈ θ that minimize the following
objective function, where θ denotes the parameter set
of the AOG.

LossAOG = EI∈Iant

[
− Stop + L(Λtop,Λ

∗
top)
]

+λunantEI∈Iobj

[
− Sunant

AOG + Lunant(ΛAOG)
] (5)

First, let us focus on the first half of the equa-
tion, which learns from part annotations. Stop and
L(Λtop,Λ

∗
top) denote the final inference score of the

AOG on image I and the loss of part localization,
respectively. Given annotations (Λ∗top, v

∗) on I , we get

Stop = max
v∈Child(top)

Sv ≈ Sv∗

L(Λtop,Λ
∗
top) = −λv∗‖ptop − p∗top‖

(6)

where we approximate the ground-truth part template
v∗ as the selected part template. We ignore the small
probability of the AOG assigning an annotated im-
age with an incorrect part template to simplify the
computation. The part-localization loss L(Λtop,Λ

∗
top)

measures the localization error between the parsed
part region ptop and the ground truth p∗top = p(Λ∗top).

The second half of Equation (5) learns from objects
without part annotations.

Sunant
AOG =

∑
u∈Child(v∗)

Sunant
u

Lunant(ΛAOG) =
∑

u∈Child(v∗)
λclose‖∆pu‖2

(7)

where the first term Sunant
AOG denotes the inference s-

core at the level of latent patterns without ground-
truth annotations of object parts. Please see the ap-
pendix for the computation of Sunant

u . The second
term Lunant(ΛAOG) penalizes latent patterns that are
far from their parent v∗. This loss encourages the
assigned neural unit to be close to its parent latent pat-
tern. We assume that 1) latent patterns that frequently
appear among unannotated objects may potentially
represent stable part appearance and should have
higher priorities; and that 2) latent patterns spatially
closer to their parent part templates are usually more
reliable.

When we set λv∗ to a constant λinf∑K
k=1 nk, we

can transform the learning objective in Equation (5)
as follows.

∀v ∈ Child(top), min
θv

Lv, Lv=−
∑

u∈Child(v)

Score(u) (8)

where Score(u) = EI∈Iv [Su + Sinf(Λu|Λ∗v)] +EI′∈Iobj

λunant[Sunant
u − λclose‖∆pu‖2]. θv ⊂ θ denotes the pa-

rameters for the sub-AOG of the part template v. We
use Iv ⊂ Iant to denote the subset of images that are
annotated with v as the ground-truth part template.

Learning the sub-AOG for each part tem-
plate: Based on Equation (8), we mine the sub-AOG
for each part template v, which uses this template’s
annotations on images I ∈ Iv ⊂ Iant, as follows.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

1) We first enumerate all possible latent patterns corre-
sponding to the k-th CNN conv-layer (k = 1, . . . ,K),
by sampling all pattern locations w.r.t. Du and pu.
2) Then, we sequentially compute Λu and Score(u)
for each latent pattern.
3) Finally, we sequentially select a total of nk
latent patterns. In each step, we select û =
argmaxu∈Child(v)∆Lv . I.e. we select latent patterns
with top-ranked values of Score(u) as children of part
template v.

Computational complexity: During the learning of
the sub-AOG for each part template, we enumerate all
possible latent patterns u and compute the Score(u)
for each u. Thus, the computational complexity is
O(MN logM) considering the cost of selecting top-
ranked Score(u), where M denotes the number of all
possible latent patterns, and N denotes the number
of object images in Iobj.

3.3 Learning via active question-answering

We propose a new learning strategy, i.e. active QA,
which is more efficient than conventional batch learn-
ing. The QA-based learning algorithm actively detects
blind spots in feature representations of the model
and ask questions for supervision. In general, blind
spots in the AOG include 1) neural-activation patterns
in the CNN that have not been encoded in the AOG
and 2) inaccurate latent patterns in the AOG. The un-
modeled neural patterns potentially reflect new part
templates, while inaccurate latent patterns correspond
to sub-optimized part templates.

As an interpretable representation of object parts,
the AOG represents blind spots using linguistic de-
scription. We design five types of answers to project
these blind spots onto semantic details of objects. Our
method selects and asks a series of questions. We
then collect answers from human users, in order to
incrementally grow new AOG branches to explain
new part templates and refine existing AOG branches
of part templates.

Our approach repeats the following QA process. As
shown in Fig. 2, at first, we use the current AOG to
localize object parts on all unannotated objects of a
category. Based on localization results, the algorithm
selects and asks about the object I , from which the
AOG obtains the most information gain. A question
q = (I, v̂,Λv̂) requires people to determine whether
our approach predicts the correct part template v̂ and
parses a correct region Λtop = Λv̂ for the part. Our
method expects one of the following answers.

Answer 1: the part detection is correct. Answer 2:
the current AOG predicts the correct part template in
the parse graph, but it does not accurately localize
the part. Answer 3: neither the part template nor the
part location is correctly estimated. Answer 4: the part
belongs to a new part template. Answer 5: the target
part does not appear in the image. In particular, in

case of receiving Answers 2–4, our method will ask
people to annotate the target part. In case of getting
Answer 3, our method will require people to specify
its part template and whether the object is flipped.
Our method uses new part annotations to refine (for
Answers 2–3) or create (for Answer 4) an AOG branch
of the annotated part template based on Equation (5).

3.3.1 Question ranking

The core of the QA-based learning is to select a se-
quence of questions that reduce the uncertainty of part
localization the most. Therefore, in this section, we
design a loss function to measure the incompatibility
between the AOG and real part appearances in object
samples. Our approach predicts the potential gain
(decrease of the loss) of asking about each object.
Objects with large gains usually correspond to not
well explained CNN neural activations. Note that
annotating a part in an object may also help localize
parts on other objects, thereby leading to a large gain.
Thus, we use a greedy strategy to select a sequence
of questions Ω = {qi|i = 1, 2, . . .}, i.e. asking about the
object that produces the most gain in each step.

For each object image I , we use P(y|I) and Q(y|I)
to denote the prior distribution and the estimated
distribution of an object part on I , respectively. A
label y ∈ {+1,−1} indicates whether I contains the
target part. The AOG estimates the probability of
object I containing the target part as Q(y = +1|I) =
1
Z exp[βStop], where Z and β are parameters for s-
caling (see Section 4.1 for details); Q(y = −1|I) =
1 − Q(y = +1|I). Let Iant denote the set of objects
that have been asked during previous QA. For each
asked object I ∈ Iant, we set its prior distribution
P(y = +1|I) = 1 if I contains the target part;
P(y = +1|I) = 0 otherwise. For each un-asked object
I ∈ Iunant, we set its prior distribution based on statis-
tics of previous answers, P(y = +1|I) = EI′∈IantP(y =
+1|I ′). Therefore, we formulate the loss function as
the KL divergence between the prior distribution P
and the estimated distribution Q.

LossQA=KL(P‖Q)=
∑
I∈Iobj

∑
y

P(y, I) log
P(y, I)

Q(y, I)

=λ
∑
I∈Iobj

∑
y

P(y|I) log
P(y|I)

Q(y|I)

(9)

where P(y, I)=P(y|I)P (I); Q(y, I)=Q(y|I)P (I); λ =
P (I)=1/|Iobj| is a constant prior probability for I .

We keep modifying both the prior distribution P
and the estimated distribution Q during the QA pro-
cess. Let the algorithm select an unannotated object
Ĩ ∈ Iunant = Iobj \ Iant and ask people to label its part.
The annotation would encode part representations of
Ĩ into the AOG and significantly change the estimated
distribution for objects that are similar to Ĩ . For each
object I ′ ∈ Iobj, we predict its estimated distribution

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

after a new part annotation as

Q̃(y = +1|I ′) =
1

Z
exp[βSnew

top,I′ |Ĩ]

Snew
top,I′ |Ĩ =Stop,I′ + ∆Stop,Ĩe

−α·dist(I′,Ĩ)
(10)

where Stop,I′ indicates the current AOG’s inference
score of Stop on image I ′. Snew

top,I′ |Ĩ denotes the pre-
dicted inference score of I ′ when people annotate Ĩ .
We assume that if object I ′ is similar to object Ĩ , the
inference score of I ′ will have an increase similar
to that of Ĩ . ∆Stop,Ĩ = EI∈IantStop,I − Stop,Ĩ denotes
the score increase of Ĩ . α is a scalar weight. We
formulate the appearance distance between I ′ and Ĩ

as dist(I ′, Ĩ)=1− φ(I′)Tφ(Ĩ)

|φ(I′)|·|φ(Ĩ)| , where φ(I ′)=M fI′ . fI′

denotes features of I ′ at the top conv-layer after ReLU
operation, and M is a diagonal matrix representing
the prior reliability for each feature dimension2. In
addition, if I ′ and Ĩ are assigned with different part
templates by the current AOG, we set an infinite dis-
tance between I ′ and Ĩ to achieve better performance.
Based on Equation (10), we predict the changes of the
KL divergence after the new annotation on Ĩ as

∆KL(Ĩ) = λ
∑

I∈Iobj

∑
y
P(y|I) log

Q̃(y|I)

Q(y|I)
(11)

Thus, in each step, our method selects and asks about
the object that decreases the KL divergence the most.

Î = argmaxI∈Iunant∆KL(I) (12)

QA implementations: In the beginning, for each
object I , we initialize P(y = +1|I) = 1 and Q(y =
+1|I)=0. Then, our approach selects and asks about
an object Î based on Equation (12). We use the answer
to update P. If a new object part is labeled during
the QA process, we apply Equation (5) to update the
AOG. More specifically, if people label a new part
template, our method will grow a new AOG branch
to encode this template. If people annotate a part
for an old part template, our method will update its
corresponding AOG branch. Then, we compute the
new distribution Q based on the new AOG. In this
way, the above QA procedure gradually grows the
AOG.

Computational complexity: In each round of QA,
we estimate the potential gain (∆KL) of asking about
each object I , where we consider the similarity be-
tween all pairs of objects. Thus, the cost of calculating
the similarity between all pairs of objects is O(N),
and the computational complexity of updating the
distribution after each QA step is O(N), where N
denotes the number of object images in Iobj. Thus, the
complexity of all QA process is O(N2).

2. Mii ∝ exp[EI∈ISvunt
i

], where vunt
i is the neural unit corre-

sponding to the i-th element of fI′ .

4 EXPERIMENTS

4.1 Implementation details

We used a 16-layer VGG network (VGG-16) [54],
which was pre-trained for object classification us-
ing 1.3M images in the ImageNet ILSVRC 2012
dataset [45]. Then, for each testing category, we fur-
ther fine-tune the VGG-16 using object images in
this category to classify target objects from random
images. We selected the last nine conv-layers of VGG-
16 as valid conv-layers. We extracted neural units
from these conv-layers to build the AOG.

In addition to the VGG-16 network, we also
used the residual network with 101 convolution-
al layers [23] (termed as ResNet-101) in experi-
ments. The ResNet-101 was pre-trained using the Im-
ageNet ILSVRC 2012 dataset. We further fine-tune the
ResNet-101 to classify bird images in the CUB200-2011
dataset [66] from random images in the ImageNet
dataset. We selected the highest three conv-layers that
generated 14 × 14 feature maps, the highest three
conv-layers that generated 28× 28 feature maps, and
the highest three conv-layers that generated 56 × 56
feature maps of the ResNet-101 as valid conv-layers.
We extracted neural units from these conv-layers to
build the AOG.

Active question-answering: Three parameters were
involved in our active-QA method, i.e. α, β, and Z.
Because most objects of the category contained the
target part, we ignored the small probability of P(y =
−1|I) in Equation (11) to simplify the computation.
As a result, Z was eliminated in Equation (11), and
the constant weight β did not affect object-selection
results in Equation (12). We set α = 4.0 in our
experiments.

Learning AOGs: Multiple latent patterns corre-
sponding to the same convolutional filter may have
similar positions pu, and their deformation ranges
may highly overlap. Thus, we selected the latent
pattern with the highest Score(u) within a small range
of ε× ε in the filter’s feature map and removed other
nearby patterns to obtain a spare AOG. Besides, for
each part template v, we estimated nk latent patterns
in the k-th conv-layer. We assumed that scores of
all latent patterns in the k-th conv-layer follow the
distribution of Score(u) ∼ α exp[−(ξ · rank)0.5] + γ,
where rank denotes the score rank of u. We set
nk = d0.5/ξe, which learned the best AOG.

4.2 Datasets

Because the evaluation of part localization requires
ground-truth annotations of part positions, we used
the following three benchmark datasets to test our
method, i.e. the PASCAL VOC Part Dataset [8], the
CUB200-2011 dataset [66], and the ILSVRC 2013 DET
Animal-Part dataset [71]. Just like in [8], [71], we
selected animal categories, which prevalently contain

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

TABLE 2
Average number of children of AOG nodes

Annotation Layer 1: Layer 2: Layer 3:
number semantic part part template latent pattern

05 3.15 3791.5 91.6
10 5.95 3804.8 93.9
15 8.52 3760.4 95.5
20 11.16 3778.3 96.3
25 13.55 3777.5 98.3
30 15.83 3837.3 99.2

non-rigid shape deformation, for testing. I.e. we select-
ed six animal categories—bird, cat, cow, dog, horse, and
sheep—from the PASCAL Part Dataset. The CUB200-
2011 dataset contains 11.8K images of 200 bird species.
We followed [5], [52], [71] and used all these images
as a single bird category for learning. The ILSVRC
2013 DET Animal-Part dataset [71] contains part an-
notations of 30 animal categories among all the 200
categories in the ILSVRC 2013 DET dataset [45].

4.3 Baselines

We used the following thirteen baselines for compar-
ison. The first two baselines were based on the Fast-
RCNN [21]. We fine-tuned the fast-RCNN with a loss
of detecting a single class/part for a fair comparison.
The first baseline, namely Fast-RCNN (1 ft), fine-tuned
the VGG-16 using part annotations to detect parts
on well-cropped objects. To enable a more fair com-
parison, we conducted the second baseline based on
two-stage fine-tuning, namely Fast-RCNN (2 fts). This
baseline first fine-tuned the VGG-16 using numerous
object-box annotations in the target category, and then
fine-tuned the VGG-16 using a few part annotations.

The third baseline was proposed in [52], namely
CNN-PDD. CNN-PDD selected a filter in a CNN
(pre-trained using ImageNet ILSVRC 2012 dataset) to
represent the part on well-cropped objects. Then, we
slightly extended [52] as the fourth baseline CNN-
PDD-ft. CNN-PDD-ft first fine-tuned the VGG-16 us-
ing object bounding boxes, and then applied [52] to
learn object parts.

The strongly supervised DPM (SS-DPM-Part) [2]
and the approach of [33] (PL-DPM-Part) were the fifth
and sixth baselines. These methods learned DPMs
for part localization. The graphical model proposed
in [8] was selected as the seventh baseline, namely
Part-Graph. The eighth baseline was the interactive
learning for part localization [5] (Interactive-DPM).

Without lots of training samples, “simple” methods
are usually insensitive to the over-fitting problem.
Thus, we designed the last four baselines as fol-
lows. We first fine-tuned the VGG-16 using object
bounding boxes, and collected image patches from
cropped objects based on the selective search [63]. We
used the VGG-16 to extract fc7 features from image
patches. The two baselines (i.e. fc7+linearSVM and
fc7+RBF-SVM) used a linear SVM and an RBF-SVM,

TABLE 4
Part localization performance on the CUB200 dataset.

Obj.-box finetune Part Annot. #Q Normalizaed distance
SS-DPM-Part [2] No 60 – 0.2504
PL-DPM-Part [33] No 60 – 0.3215
Part-Graph [8] No 60 – 0.3697
fc7+linearSVM Yes 60 – 0.2786
fc7+RBF-SVM Yes 60 – 0.3360
Interactive-DPM [5] No 60 – 0.2011
CNN-PDD [52] No 60 – 0.2446
CNN-PDD-ft [52] Yes 60 – 0.2694
Fast-RCNN (1 ft) [21] No 60 – 0.3105
Fast-RCNN (2 fts) [21] Yes 60 – 0.1989
AOG w/o QA [71] Yes 20 – 0.1084
Ours (VGG-16, setting λunant = 0) Yes 10 46 0.0574
Ours (VGG-16, setting λunant = 0) Yes 20 150 0.0464
Ours (based on ResNet-101) Yes 10 – 0.2807
Ours (based on ResNet-101) Yes 20 – 0.2510
Ours (based on VGG-16) Yes 10 28 0.0570± 0.00449
Ours (based on VGG-16) Yes 20 112 0.0455± 0.00439

See Table 3 for the introduction of the 2nd and 3rd columns. The
4th column shows the number of questions for training. The 4th
column indicates whether the baseline used all object annotations
(more than part annotations) in the category to pre-fine-tune a CNN
before learning the part.

respectively, to detect object parts. The other baselines
VAE+linearSVM and CoopNet+linearSVM used features
of the VAE network [27] and the CoopNet [67], respec-
tively, instead of fc7 features, for part detection.

The last baseline [71] learned AOGs without QA
(AOG w/o QA). We randomly selected objects and
annotated their parts for training.

Both object annotations and part annotations are
used to learn models in all the thirteen baselines
(including those without fine-tuning). Fast-RCNN (1
ft) and CNN-PDD used the cropped objects as the
input of the CNN; SS-DPM-Part, PL-DPM-Part, Part-
Graph, and Interactive-DPM used object boxes and part
boxes to learn models. CNN-PDD-ft, Fast-RCNN (2
fts), and methods based on fc7 features used object
bounding boxes for fine-tuning.

4.4 Evaluation metric
As discussed in [8], [71], a fair evaluation of part
localization requires removing factors of object de-
tection. Thus, we used ground-truth object bounding
boxes to crop objects as testing images. Given an
object image, some competing methods (e.g. Fast-
RCNN (1 ft), Part-Graph, and SS-DPM-Part) estimate
several bounding boxes for the part with different
confidences. We followed [8], [42], [52], [71] to take
the most confident bounding box per image as the
part-localization result. Given part-localization results
of a category, we applied the normalized distance [52]
and the percentage of correctly localized parts (PCP) [34],
[49], [70] to evaluate the localization accuracy. We
measured the distance between the predicted part
center and the ground-truth part center, and then
normalized the distance using the diagonal length of
the object as the normalized distance. For the PCP, we
used the typical metric of “IoU ≥ 0.5” [21] to identify
correct part localizations.

4.5 Experimental results
We learned AOGs for the head, the neck, and the
nose/muzzle/beak parts of the six animal categories

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0 2 4 6 8 10
5

10

15

20

25

30

0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1Energy ratio of the
inferred activations

Activation ratioRelative magnitude of
the inferred activations conv3-1

conv3-2
conv3-3
conv4-1
conv4-2
conv4-3
conv5-1
conv5-2
conv5-3

Annotation number Annotation number Annotation number

Fig. 3. Activation states of latent patterns under the selected part template. (left) The ratio of the inferred
activation energy to all activation energy in feature maps. (middle) The relative magnitude of the inferred
activations, which is normalized by the average activation value of all neural units on the feature map. (right) The
ratio of latent patterns that are assigned with an activated neural unit. Different curves show scores computed
based on latent patterns or neural activations in different conv-layers.

TABLE 3
Normalized distance of part localization on the ILSVRC 2013 DET Animal-Part dataset.

Part Annot. Obj.-box finetune gold. bird frog turt. liza. koala lobs. dog fox cat lion tiger bear rabb. hams. squi.
SS-DPM-Part [2] 60 No 0.1859 0.2747 0.2105 0.2316 0.2901 0.1755 0.1666 0.1948 0.1845 0.1944 0.1334 0.0929 0.1981 0.1355 0.1137 0.1717

PL-DPM-Part [33] 60 No 0.2867 0.2337 0.2169 0.2650 0.3079 0.1445 0.1526 0.1904 0.2252 0.1488 0.1450 0.1340 0.1838 0.1968 0.1389 0.2590

Part-Graph [8] 60 No 0.3385 0.3305 0.3853 0.2873 0.3813 0.0848 0.3467 0.1679 0.1736 0.3499 0.1551 0.1225 0.1906 0.2068 0.1622 0.3038

fc7+linearSVM 60 Yes 0.1359 0.2117 0.1681 0.1890 0.2557 0.1734 0.1845 0.1451 0.1374 0.1581 0.1528 0.1525 0.1354 0.1478 0.1287 0.1291

fc7+RBF-SVM 60 Yes 0.1818 0.2637 0.2035 0.2246 0.2538 0.1663 0.1660 0.1512 0.1670 0.1719 0.1176 0.1638 0.1325 0.1312 0.1410 0.1343

CNN-PDD [52] 60 No 0.1932 0.2015 0.2734 0.2195 0.2650 0.1432 0.1535 0.1657 0.1510 0.1787 0.1560 0.1756 0.1444 0.1320 0.1251 0.1776

CNN-PDD-ft [52] 60 Yes 0.2109 0.2531 0.1999 0.2144 0.2494 0.1577 0.1605 0.1847 0.1845 0.2127 0.1521 0.2066 0.1826 0.1595 0.1570 0.1608

Fast-RCNN (1 ft) [21] 30 No 0.0847 0.1520 0.1905 0.1696 0.1412 0.0754 0.2538 0.1471 0.0886 0.0944 0.1004 0.0585 0.1013 0.0821 0.0577 0.1005

Fast-RCNN (2 fts) [21] 30 Yes 0.0913 0.1043 0.1294 0.1632 0.1585 0.0730 0.2530 0.1148 0.0736 0.0770 0.0680 0.0441 0.1265 0.1017 0.0709 0.0834

Ours 10 Yes 0.0796 0.0850 0.0906 0.2077 0.1260 0.0759 0.1212 0.1476 0.0584 0.1107 0.0716 0.0637 0.1092 0.0755 0.0697 0.0421
Ours 20 Yes 0.0638 0.0793 0.0765 0.1221 0.1174 0.0720 0.1201 0.1096 0.0517 0.1006 0.0752 0.0624 0.1090 0.0788 0.0603 0.0454
Ours 30 Yes 0.0642 0.0734 0.0971 0.0916 0.0948 0.0658 0.1355 0.1023 0.0474 0.1011 0.0625 0.0632 0.0964 0.0783 0.0540 0.0499

horse zebra swine hippo catt. sheep ante. camel otter arma. monk. elep. red pa. gia.pa. Avg.
SS-DPM-Part [2] 60 No 0.2346 0.1717 0.2262 0.2261 0.2371 0.2364 0.2026 0.2308 0.2088 0.2881 0.1859 0.1740 0.1619 0.0989 0.1946

PL-DPM-Part [33] 60 No 0.2657 0.2937 0.2164 0.2150 0.2320 0.2145 0.3119 0.2949 0.2468 0.3100 0.2113 0.1975 0.1835 0.1396 0.2187

Part-Graph [8] 60 No 0.2804 0.3376 0.2979 0.2964 0.2513 0.2321 0.3504 0.2179 0.2535 0.2778 0.2321 0.1961 0.1713 0.0759 0.2486

fc7+linearSVM 60 Yes 0.2003 0.2409 0.1632 0.1400 0.2043 0.2274 0.1479 0.2204 0.2498 0.2875 0.2261 0.1520 0.1557 0.1071 0.1776

fc7+RBF-SVM 60 Yes 0.2207 0.1550 0.1963 0.1536 0.2609 0.2295 0.1748 0.2080 0.2263 0.2613 0.2244 0.1806 0.1417 0.1095 0.1838

CNN-PDD [52] 60 No 0.2610 0.2363 0.1623 0.2018 0.1955 0.1350 0.1857 0.2499 0.2486 0.2656 0.1704 0.1765 0.1713 0.1638 0.1893

CNN-PDD-ft [52] 60 Yes 0.2417 0.2725 0.1943 0.2299 0.2104 0.1936 0.1712 0.2552 0.2110 0.2726 0.1463 0.1602 0.1868 0.1475 0.1980

Fast-RCNN (1 ft) [21] 30 No 0.2694 0.0823 0.1319 0.0976 0.1309 0.1276 0.1348 0.1609 0.1627 0.1889 0.1367 0.1081 0.0791 0.0474 0.1252

Fast-RCNN (2 fts) [21] 30 Yes 0.1629 0.0881 0.1228 0.0889 0.0922 0.0622 0.1000 0.1519 0.0969 0.1485 0.0855 0.1085 0.0407 0.0542 0.1045

Ours 10 Yes 0.1297 0.1413 0.2145 0.1377 0.1493 0.1415 0.1046 0.1239 0.1288 0.1964 0.0524 0.1507 0.1081 0.0640 0.1126

Ours 20 Yes 0.1083 0.1389 0.1475 0.1280 0.1490 0.1300 0.0667 0.1033 0.1103 0.1526 0.0497 0.1301 0.0802 0.0574 0.0965
Ours 30 Yes 0.1129 0.1066 0.1408 0.1204 0.1118 0.1260 0.0825 0.0836 0.0901 0.1685 0.0490 0.1224 0.0779 0.0577 0.0909

The 2nd column shows the number of part annotations for training. The 3rd column indicates whether the baseline used all object-box
annotations in the category to pre-fine-tune a CNN before learning the part (object-box annotations are more than part annotations).

TABLE 5
Part localization on the Pascal VOC Part dataset.

Method Annot. #Q bird cat cow dog horse sheep Avg.

H
ea

d

Fast-RCNN (1 ft) [21] 10 – 0.326 0.238 0.283 0.286 0.319 0.354 0.301
Fast-RCNN (2 fts) [21] 10 – 0.233 0.196 0.216 0.206 0.253 0.286 0.232
Fast-RCNN (1 ft) [21] 20 – 0.352 0.131 0.275 0.189 0.293 0.252 0.249
Fast-RCNN (2 fts) [21] 20 – 0.176 0.132 0.191 0.171 0.231 0.189 0.182
Fast-RCNN (1 ft) [21] 30 – 0.285 0.146 0.228 0.141 0.250 0.220 0.212
Fast-RCNN (2 fts) [21] 30 – 0.173 0.156 0.150 0.137 0.132 0.221 0.161
Ours 10 14.7 0.144 0.146 0.137 0.145 0.122 0.193 0.148

N
ec

k

Fast-RCNN (1 ft) [21] 10 – 0.251 0.333 0.310 0.248 0.267 0.242 0.275
Fast-RCNN (2 fts) [21] 10 – 0.317 0.335 0.307 0.362 0.271 0.259 0.309
Fast-RCNN (1 ft) [21] 20 – 0.255 0.359 0.241 0.281 0.268 0.235 0.273
Fast-RCNN (2 fts) [21] 20 – 0.260 0.289 0.304 0.297 0.255 0.237 0.274
Fast-RCNN (1 ft) [21] 30 – 0.288 0.324 0.247 0.262 0.210 0.220 0.258
Fast-RCNN (2 fts) [21] 30 – 0.201 0.276 0.281 0.254 0.220 0.229 0.244
Ours 10 24.5 0.120 0.144 0.178 0.152 0.161 0.161 0.152

N
os

e/
M

uz
zl

e/
Be

ek Fast-RCNN (1 ft) [21] 10 – 0.446 0.389 0.301 0.326 0.385 0.328 0.363
Fast-RCNN (2 fts) [21] 10 – 0.447 0.433 0.313 0.391 0.338 0.350 0.379
Fast-RCNN (1 ft) [21] 20 – 0.425 0.372 0.260 0.303 0.334 0.279 0.329
Fast-RCNN (2 fts) [21] 20 – 0.419 0.351 0.289 0.249 0.296 0.293 0.316
Fast-RCNN (1 ft) [21] 30 – 0.462 0.336 0.242 0.260 0.247 0.257 0.301
Fast-RCNN (2 fts) [21] 30 – 0.430 0.338 0.239 0.219 0.271 0.285 0.297
Ours 10 23.8 0.134 0.112 0.182 0.156 0.217 0.181 0.164

The 3rd and 4th columns show the number of part annotations and
the average number of questions for training.

in the Pascal VOC Part dataset. For the ILSVRC
2013 DET Animal-Part dataset and the CUB200-2011

dataset, we learned an AOG for the head part3 of
each category. It is because all categories in the two
datasets contain the head part. We did not train hu-
man annotators. Shape differences between two part
templates were often very vague, so that an annotator
could assign a part to either part template.

Table 2 shows how the AOG grew when people
annotated more parts during the QA process. Given
AOGs learned for the PASCAL VOC Part dataset,
we computed the average number of children for
each node in different AOG layers. The AOG mainly
grew by adding new branches to represent new part
templates. The refinement of an existing AOG branch
did not significantly change the node number of the
AOG.

Fig. 3 analyzes activation states of latent patterns
in AOGs that were learned with different numbers
of part annotations. Given a testing image I for part
parsing, we only focused on the inferred latent pat-

3. It is the “forehead” part for birds in the CUB200-2011 dataset.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Fig. 4. Part localization results based on AOGs.

Antelope

Lizard Bird

Cat

Hamster

Red
panda

Sheep

Tiger

Bear

Koala
bear

Dog

Lion

Fig. 5. Visualization of latent patterns in AOGs for the head part. The up-convolutional net [13] synthesizes
images corresponding neural activations, which are selected by the AOG during part parsing. We only visualize
neural activations selected from conv-layers 5–7. Some latent patterns select neural units corresponding to
constituent regions w.r.t. the target part, while other latent patterns describe contexts.

Latent
pattern 1

Latent
pattern 2

Latent
pattern 3

Latent
pattern 4

Latent
pattern 5

Latent
pattern 6

Latent
pattern 7

Fig. 6. Image patches corresponding to different latent
patterns.

terns and neural units, i.e. latent patterns and their
inferred neural units under the selected part template.
Let V and V′ ⊂ V denote all units in a specific conv-
layer and the inferred units, respectively. av denotes
the activation score of v ∈ V after the ReLU operation.
av is also normalized by the average activation level of
v’s corresponding feature maps w.r.t. different images.
Thus, in Fig. 3(left), we computed the ratio of the

inferred activation energy as
∑

v∈V′ av∑
v∈V av

. For each in-
ferred latent pattern u, au denotes the activation score
of its selected neural unit4. Fig. 3(middle) measures
the relative magnitude of the inferred activations,
which was measured as Eu∈U[au]

Ev∈V[av]
. Fig. 3(right) shows

the ratio of the latent patterns being strongly acti-
vated. We used a threshold τ = Ev∈V[av] to identify
strong activations, i.e. computing the activation ratio
as Eu∈U[1(au > τ)]. Curves in Fig. 3 were reported as
the average performance using images in the CUB200-
2011 dataset.

Fig. 5 visualizes latent patterns in the AOG based
on the technique of [13]. More specifically, Fig. 6 lists
images patches inferred by different latent patterns
in the AOG with high inference scores. It shows
that each latent pattern corresponds to a specific part
shape through different images.

Fig. 4 shows part localization results based on
AOGs. Tables 3, 5, and 4 compare the part-localization
performance of different baselines on different bench-
mark datasets using the evaluation metric of the
normalized distance. Tables 4 and 5 show both the
number of part annotations and the number of ques-
tions. In particular, when we learned AOGs using the
CUB200-2011 dataset [66], we required five human
annotators to conduct the QA process for five times,
in order to compute the mean value and the standard
deviation of the normalized distance. As shown in

4. Two latent patterns may select the same neural unit

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Table 4, various annotators could generate relatively
consistent results. Channel maps of the last 14 × 14
feature map of the VGG-16 and those of the ResNet-
101 are compared in Fig. 7. Because of skip connec-
tions, feature maps in residual networks were usually
densely activated, which were substantially different
from sparsely activated features maps in tradition-
al neural networks without skip connections. Thus,
feature maps in residual networks were not simply
activated by object parts, which explained the bad
performance of AOGs based on residual networks.

Table 6 lists part-localization performance, which
was evaluated by the PCP metric. In particular, the
method of Ours+fastRCNN combined our method and
the fast-RCNN to refine part-localization results5. Our
method learned AOGs with about 1/6–1/2 part an-
notations, but exhibited superior performance to the
second best baseline.

Effects of unannotated objects: In order to evaluate
the effects of incorporating unannotated objects dur-
ing the learning of AOGs, we set λunant = 0 in Equa-
tion (5) to test the performance without unannotated
objects. AOGs were learned using the CUB200-2011
dataset, and the performance was reported in Table 4.
The use of annotated objects improved a bit the lo-
calization performance and significantly reduced the
number of questions in active QA.

Effects of the order of questions: In order to
quantify the effect of the order of questions, we
learned AOGs by changing the order of questions.
AOGs were learned using the CUB200-2011 dataset,
and we learned three AOGs by randomly selecting
objects for QA. In this way, the three AOGs were
learned using different part annotations. The average
performance was reported in Table 8, which shows
that the randomly changed question order hurt the
performance of AOGs.

Effects of part templates: In order to evaluate the
effects of part-template nodes, we randomly removed
M part-template nodes (M = 1, 3, or 5) from a pre-
trained AOG to test the performance. The AOG was
pre-trained using the CUB200-2011 dataset. Three sets
of M part templates were randomly selected from
the AOG to construct three new AOGs, and the
average performance of the three AOGs was reported
in Table 7. The removal of part templates significantly
affected the part-localization performance.

Effects of annotations: In order to evaluate the ef-
fects of the number of part annotations, we increased
the number of annotations to 60. We learned three
AOGs to localize three different parts (head, beak
and tail) in the CUB200-2011 dataset. As shown in

5. We used part boxes annotated during the QA process to learn a
fast-RCNN for part detection. Given the inference result Λv of part
template v on image I , we define a new inference score for local-
ization refinement Snew

v (Λnew
v) = Sv + λ1Φ(Λnew

v) + λ2
‖pv−pnew

v ‖
2σ2 ,

where σ = 70 pixels, λ1 = 5, and λ2 = 10. Φ(Λnew
v) denotes the

fast-RCNN’s detection score for the patch of Λnew
v .

VGG-16 ResNet-101 VGG-16 ResNet-101

Fig. 7. Comparison of channel maps of the last 14×14
feature maps (after an ReLU operation). Feature maps
of the VGG-16 are more likely to represent object parts
than the ResNet-101.

0.04

0.05

0.06

10 20 30 40 50 60
0.115

0.125

0.135

10 20 30 40 50
0.045

0.06

0.075

0.09

10 20 30 40 50 60

of part annotations # of part annotations # of part annotationsN
or

m
al

iz
ed

 D
is

ta
nc

e forehead beak tail

60

Fig. 8. Part localization performance on the CUB200-
2011 dataset.

Fig. 8, the results were saturated when we annotated
about 40 object parts. Thus, we could considered
the performance at the saturation point as the upper
bound of the performance of our method.

Effects of errors involved in the human respons-
es: In order to investigate the effects of the errors
in the human responses, we involved two types of
errors during the learning of AOGs: errors in the
object bounding boxes, and errors in the answers to
the questions. More specifically, we annotated object
parts inaccurately and answered 25% of questions
incorrectly. We learned three AOGs using the CUB200-
2011 dataset, and reported the average performance
in Table 9. The errors involved in human responses
hurt the performance of AOGs, but the result was still
better than most of baselines in Table 4.

4.6 Justification of the methodology

We have three reasons to explain the good perfor-
mance of our method. First, generic information:
the latent patterns in the AOG were pre-fine-tuned
using massive object images in a category, instead of
being learned from a few part annotations. Thus, these
patterns reflected generic part appearances and did
not over-fit to a few part annotations.

Second, fewer model drifts: Instead of learning
new CNN parameters, our method just used limited
part annotations to mine the related patterns to repre-
sent the part concept. In addition, during active QA,
Equation (10) usually selected objects with common
poses for QA, i.e. choosing objects sharing common
latent patterns with many other objects. Thus, the
learned AOG suffered less from the model-drift prob-
lem.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

TABLE 7
Effects of removing different numbers of part templates from a pre-trained AOG.

Original AOG remove 1 parts remove 3 parts remove 5 parts
of parts templates 10 9 7 5
Avg. normalized distance 0.0493 0.0580 0.0608 0.1010

TABLE 8
Effects of the order of questions.

AOGs learned by our method AOGs learned by randomly changing questions
Avg. normalized distance when annotating 10 parts 0.0570± 0.00449 0.0726± 0.01318
Avg. normalized distance when annotating 20 parts 0.0455± 0.00439 0.0732± 0.01340

TABLE 9
Effects of the errors involved in human responses.

AOGs learned by our method AOGs learned by involving some errors
Avg. normalized distance when annotating 10 parts 0.0570± 0.00449 0.0806± 0.01460
Avg. normalized distance when annotating 20 parts 0.0455± 0.00439 0.0720± 0.00542

Different questions Different questions Different questions

Number of part
templates

Normalized
distance

)(KL I

Fig. 9. ∆KL(I), the number of part templates, and the
normalized distance of the AOG learned after different
numbers of questions.

TABLE 6
Part localization evaluated using the PCP metric.

of part annot. VOC Part ILSVRC Animal
SS-DPM-Part [2] 60 7.2 19.2
PL-DPM-Part [33] 60 6.7 12.8
Part-Graph [8] 60 11.0 25.6
fc7+linearSVM 60 13.5 24.5
fc7+RBF-SVM 60 9.5 18.8
VAE+linearSVM [27] 30 6.7 –
CoopNet+linearSVM [67] 30 5.6 –
Fast-RCNN (1 ft) [21] 30 34.5 62.3
Fast-RCNN (2 fts) [21] 30 45.7 68.6
Ours+fastRCNN 10 33.0 53.0
Ours+fastRCNN 20 47.2 64.9
Ours+fastRCNN 30 50.5 71.1

Third, high QA efficiency: Our QA process bal-
anced both the commonness and the accuracy of a
part template in Equation (10). In the early steps
of QA, our approach was prone to asking about
new part templates, because objects with un-modeled
part appearance usually had low inference scores. In
later QA steps, common part appearances had been
modeled, and our method gradually changed to ask
about objects belonging to existing part templates to
refine the AOG. Our method did not waste much
labor of labeling objects that had been well modeled
or had strange appearance. Fig. 9 visualizes how the
normalized distance, the AOG size, and the normal-
ized distance changed with the number of questions.
We found that except for the first question, ∆KL(I)

usually decreased during the QA process. Therefore,
we may set a threshold for ∆KL(I) as the stopping
criterion of the active QA. For example, according to
Fig. 9, if we set the stop criterion as ∆KL(I) < 0.25,
∆KL(I) < 0.22, and ∆KL(I) < 0.20, then the normal-
ized distance of the learned AOG would be 0.0561,
0.0420, 0.0446, respectively.

5 SUMMARY AND DISCUSSION

In this paper, we have proposed a method to bridge
and solve the following three crucial issues in com-
puter vision simultaneously.
• Removing noisy representations in conv-layers of

a CNN and using an AOG model to reveal the
semantic hierarchy of objects hidden in the CNN.

• Enabling people to communicate with neural
representations in intermediate conv-layers of a
CNN directly for model learning, based on the
semantic representation of the AOG.

• Weakly-supervised transferring of object-part
representations from a pre-trained CNN to model
object parts at the semantic level, which boosts
the learning efficiency.

Our method incrementally mines object-part pat-
terns from conv-layers of a pre-trained CNN and uses
an AOG to encode the mined semantic hierarchy.
The AOG semanticizes neural units in intermediate
feature maps of a CNN by associating these units
with semantic parts. We have proposed an active QA
strategy to learn such an AOG model with limited
human annotations. We have tested the proposed
method for a total of 37 categories in three benchmark
datasets. Our method has outperformed other base-
lines in the application of part localization. For exam-
ple, our method with 11 part annotations performed
better than fast-RCNN with 60 part annotations on
the ILSVRC dataset in Fig. 8.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

ACKNOWLEDGMENTS

This work is partially supported by National Nat-
ural Science Foundation of China (U19B2043 and
61906120), DARPA XAI Award N66001-17-2-4029, NS-
F IIS 1423305, and ARO project W911NF1810296.

REFERENCES

[1] M. Aubry and B. C. Russell. Understanding deep features with
computer-generated imagery. In ICCV, 2015.

[2] H. Azizpour and I. Laptev. Object detection using strongly-
supervised deformable part models. In ECCV, 2012.

[3] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. Interac-
tively co-segmenting topically related images with intelligent
scribble guidance. In IJCV, 2011.

[4] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Net-
work dissection: Quantifying interpretability of deep visual
representations. In CVPR, 2017.

[5] S. Branson, P. Perona, and S. Belongie. Strong supervision
from weak annotation: Interactive training of deformable part
models. In ICCV, 2011.

[6] S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder, P. Per-
ona, and S. Belongie. Visual recognition with humans in the
loop. In European Conference on Computer Vision, pages 438–451.
Springer, 2010.

[7] X. Chen and A. Gupta. Webly supervised learning of convo-
lutional networks. In ICCV, 2015.

[8] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and
A. Yuille. Detect what you can: Detecting and representing
objects using holistic models and body parts. In CVPR, 2014.

[9] M. Cho, S. Kwak, C. Schmid, and J. Ponce. Unsupervised ob-
ject discovery and localization in the wild: Part-based match-
ing with bottom-up region proposals. In CVPR, 2015.

[10] Y. Cong, J. Liu, J. Yuan, and J. Luo. Self-supervised online
metric learning with low rank constraint for scene categoriza-
tion. In IEEE Transactions on Image Processing, 22(8):3179–3191,
2013.

[11] S. Dasgupta and D. Hsu. Hierarchical sampling for active
learning. In Proceedings of the 25th international conference on
Machine learning, pages 208–215, 2008.

[12] J. Deng, O. Russakovsky, J. Krause, M. Bernstein, A. Berg, and
L. Fei-Fei. Scalable multi-label annotation. In CHI, 2014.

[13] A. Dosovitskiy and T. Brox. Inverting visual representations
with convolutional networks. In CVPR, 2016.

[14] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox.
Discriminative unsupervised feature learning with convolu-
tional neural networks. In NIPS, 2014.

[15] L. Duan, D. Xu, I. Tsang, and J. Luo. Visual event recognition
in videos by learning from web data. In CVPR, 2010.

[16] M. Everingham, L. Gool, C. Williams, J. Winn, and A. Zis-
serman. The PASCAL Visual Object Classes Challenge 2007
(VOC2007) Results.

[17] R. C. Fong and A. Vedaldi. Interpretable explanations of black
boxes by meaningful perturbation. In ICCV, 2017.

[18] Y. Fu, X. Zhu, and B. Li. A survey on instance selection for
active learning. Knowledge and information systems, 35(2):249–
283, 2013.

[19] P. W. Gallagher, S. Tang, and Z. Tu. What happened to
my dog in that network: unraveling top-down generators in
convolutional neural netowrks. In arXiv:1511.07125v1, 2015.

[20] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation
in backpropagation. In ICML, 2015.

[21] R. Girshick. Fast r-cnn. In ICCV, 2015.
[22] A. Gonzalez-Garcia, D. Modolo, and V. Ferrari. Do semantic

parts emerge in convolutional neural networks? In Internation-
al Journal of Computer Vision (IJCV), 126(5):476–494, May 2018.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016.

[24] A. Holub, P. Perona, and M. C. Burl. Entropy-based active
learning for object recognition. In 2008 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshop-
s, pages 1–8. IEEE, 2008.

[25] Z. Hu, X. Ma, Z. Liu, E. Hovy, and E. P. Xing. Harnessing
deep neural networks with logic rules. In ACL, 2016.

[26] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.
Densely connected convolutional networks. In CVPR, 2017.

[27] D. P. Kingma and M. Welling. Auto-encoding variational
bayes. In ICLR, 2014.

[28] P. Koh and P. Liang. Understanding black-box predictions via
influence functions. In ICML, 2017.

[29] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classi-
fication with deep convolutional neural networks. In NIPS,
2012.

[30] H. Lakkaraju, E. Kamar, R. Caruana, and E. Horvitz. Identify-
ing unknown unknowns in the open world: Representations
and policies for guided exploration. In AAAI, 2017.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. In Proceedings of the
IEEE, 1998.

[32] D. D. Lewis and W. A. Gale. A sequential algorithm for
training text classifiers. In SIGIR94, pages 3–12. Springer, 1994.

[33] B. Li, W. Hu, T. Wu, and S.-C. Zhu. Modeling occlusion by
discriminative and-or structures. In ICCV, 2013.

[34] D. Lin, X. Shen, C. Lu, and J. Jia. Deep lac: Deep localization,
alignment and classification for fine-grained recognition. In
CVPR, 2015.

[35] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,
J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollar. Mi-
crosoft coco: Common objects in context. In arXiv:1405.0312v3
[cs.CV], 21 Feb 2015.

[36] C. Long and G. Hua. Multi-class multi-annotator active
learning with robust gaussian process for visual recognition.
In ICCV, 2015.

[37] Y. Lu. Unsupervised learning on neural network outputs with
application in zero-shot learning. In IJCAI, 2016.

[38] A. Mahendran and A. Vedaldi. Understanding deep image
representations by inverting them. In CVPR, 2015.

[39] N. A. H. Mamitsuka et al. Query learning strategies using
boosting and bagging. In Machine learning: proceedings of the
fifteenth international conference (ICML98), volume 1. Morgan
Kaufmann Pub, 1998.

[40] H. T. Nguyen and A. Smeulders. Active learning using
pre-clustering. In Proceedings of the twenty-first international
conference on Machine learning, page 79, 2004.

[41] C. Olah, A. Mordvintsev, and L. Schubert. Feature visu-
alization. Distill, 2017. https://distill.pub/2017/feature-
visualization.

[42] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localiza-
tion for free? weakly-supervised learning with convolutional
neural networks. In CVPR, 2015.

[43] D. Pathak, P. Krähenbühl, and T. Darrell. Constrained convo-
lutional neural networks for weakly supervised segmentation.
In ICCV, 2015.

[44] M. T. Ribeiro, S. Singh, and C. Guestrin. “why should i trust
you?” explaining the predictions of any classifier. In KDD,
2016.

[45] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei. Imagenet large scale visual recognition chal-
lenge. In IJCV, 115(3):211–252, 2015.

[46] O. Russakovsky, L.-J. Li, and L. Fei-Fei. Best of both worlds:
human-machine collaboration for object annotation. In CVPR,
2015.

[47] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra. Grad-cam: Visual explanations from deep
networks via gradient-based localization. In ICCV, 2017.

[48] H. S. Seung, M. Opper, and H. Sompolinsky. Query by
committee. In Proceedings of the fifth annual workshop on
Computational learning theory, pages 287–294, 1992.

[49] K. J. Shih, A. Mallya, S. Singh, and D. Hoiem. Part localization
using multi-proposal consensus for fine-grained categoriza-
tion. In BMVC, 2015.

[50] Z. Si and S.-C. Zhu. Learning and-or templates for object
recognition and detection. In PAMI, 2013.

[51] M. Simon and E. Rodner. Neural activation constellations:
Unsupervised part model discovery with convolutional net-
works. In ICCV, 2015.

[52] M. Simon, E. Rodner, and J. Denzler. Part detector discovery
in deep convolutional neural networks. In ACCV, 2014.

[53] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside con-
volutional networks: Visualising image classification models
and saliency maps. In arXiv:1312.6034, 2013.

[54] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.

[55] H. O. Song, R. Girshick, S. Jegelka, J. Mairal, Z. Harchaoui,
and T. Darrell. On learning to localize objects with minimal

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

supervision. In ICML, 2014.
[56] Y. C. Song, I. Naim, A. A. Mamun, K. Kulkarni, P. Singla,

J. Luo, D. Gildea, and H. Kautz. Unsupervised alignment of
actions in video with text descriptions. In IJCAI, 2016.

[57] J. Su, D. V. Vargas, and S. Kouichi. One pixel attack for fooling
deep neural networks. In arXiv:1710.08864, 2017.

[58] Q. Sun, A. Laddha, and D. Batra. Active learning for struc-
tured probabilistic models with histogram approximation. In
CVPR, 2015.

[59] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. In ICLR, 2014.

[60] S. Tong and E. Chang. Support vector machine active learning
for image retrieval. In Proceedings of the ninth ACM international
conference on Multimedia, pages 107–118, 2001.

[61] S. Tong and D. Koller. Support vector machine active learning
with applications to text classification. Journal of machine
learning research, 2(Nov):45–66, 2001.

[62] K. Tu, M. Meng, M. W. Lee, T. E. Choe, and S.-C. Zhu.
Joint video and text parsing for understanding events and
answering queries. In IEEE MultiMedia, 2014.

[63] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.
Smeulders. Selective search for object recognition. In IJCV,
104(2):154–171, 2013.

[64] S. Vijayanarasimhan and K. Grauman. Large-scale live active
learning: Training object detectors with crawled data and
crowds. In CVPR, 2011.

[65] C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass
recognition and part localization with humans in the loop. In
2011 International Conference on Computer Vision, pages 2524–
2531. IEEE, 2011.

[66] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The
caltech-ucsd birds-200-2011 dataset. Technical Report CNS-TR-
2011-001, In California Institute of Technology, 2011.

[67] J. Xie, Y. Lu, S.-C. Zhu, and Y. N. Wu. Cooperative training of
descriptor and generator networks. In arXiv 1609.09408, 2016.

[68] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transfer-
able are features in deep neural networks? In NIPS, 2014.

[69] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In ECCV, 2014.

[70] N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-based
r-cnns for fine-grained category detection. In ECCV, 2014.

[71] Q. Zhang, R. Cao, Y. N. Wu, and S.-C. Zhu. Growing
interpretable graphs on convnets via multi-shot learning. In
AAAI, 2017.

[72] Q. Zhang, R. Cao, Y. N. Wu, and S.-C. Zhu. Mining object parts
from cnns via active question-answering. In CVPR, 2017.

[73] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki.
Attributed graph mining and matching: An attempt to define
and extract soft attributed patterns. In CVPR, 2014.

[74] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki. Object
discovery: soft attributed graph mining. In PAMI, 38(3), 2016.

[75] Q. Zhang, W. Wang, and S.-C. Zhu. Examining cnn represen-
tations with respect to dataset bias. In AAAI, 2018.

[76] Q. Zhang, Y.-N. Wu, and S.-C. Zhu. Mining and-or graphs for
graph matching and object discovery. In ICCV, 2015.

[77] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.
Object detectors emerge in deep scene cnns. In ICRL, 2015.

[78] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.
Learning deep features for discriminative localization. In
CVPR, 2016.

[79] X. S. Zhou and T. S. Huang. Relevance feedback in image re-
trieval: A comprehensive review. Multimedia systems, 8(6):536–
544, 2003.

[80] Z.-H. Zhou. A brief introduction to weakly supervised learn-
ing. National Science Review, 5(1):44–53, 2018.

[81] L. Zhu, Y. Chen, Y. Lu, C. Lin, and A. Yuille. Max-margin
and/or graph learning for parsing the human body. In CVPR,
2008.

[82] S. Zhu and D. Mumford. A stochastic grammar of images.
In Foundations and Trends in Computer Graphics and Vision,
2(4):259–362, 2006.

Quanshi Zhang received the B.S. degree in
machine intelligence from Peking University,
China, in 2009 and M.S. and Ph.D. degrees
in center for spatial information science from
the University of Tokyo, Japan, in 2011 and
2014, respectively. In 2014, he went to the
University of California, Los Angeles, as a
post-doctoral associate. Now, he is an asso-
ciate professor at the Shanghai Jiao Tong U-
niversity. His research interests include com-
puter vision, machine learning, and robotics.

Jie Ren is a student at the Shanghai Jiao
Tong University. Her research mainly focuses
on computer vision and machine learning.

Ge Huang is an undergraduate student at
the Shanghai Jiao Tong University. Her re-
search interests include computer vision and
machine learning.

Ruiming Cao received the B.S. degree in
computer science from the University of Cal-
ifornia, Los Angeles, in 2017. Now, he is a
master student at the University of California,
Los Angeles. His research mainly focuses on
computer vision.

Ying Nian Wu received a Ph.D. degree from
the Harvard University in 1996. He was an
Assistant Professor at the University of Michi-
gan between 1997 and 1999 and an Assis-
tant Professor at the University of California,
Los Angeles between 1999 and 2001. He
became an Associate Professor at the Uni-
versity of California, Los Angeles in 2001.
From 2006 to now, he is a professor at the
University of California, Los Angeles. His re-
search interests include statistics, machine

learning, and computer vision.

Song-Chun Zhu received a Ph.D. degree
from Harvard University in 1996, and is a pro-
fessor with the Departments of Statistics and
Computer Science at UCLA. He has pub-
lished over 300 papers in computer vision,
statistical modeling and learning, cognition,
Language, robotics, and AI. He received a
number of honors, including the Marr Prize
in 2003, the Aggarwal prize from the Intl
Association of Pattern Recognition in 2008,
the Holmholtz Test-of-Time prize in 2013,

twice Marr Prize honorary nominations in 1999 and 2007 . a Sloan
Fellowship, the US NSF Career Award, and ONR Young Investigator
Award in 2001. He is a Fellow of IEEE since 2011.

