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Deformable Generator Networks: Unsupervised
Disentanglement of Appearance and Geometry

Xianglei Xing, Member, IEEE, Ruiqi Gao,Tian Han,Song-Chun Zhu, Fellow, IEEE, and Ying Nian Wu

Abstract—We present a deformable generator model to disentangle the appearance and geometric information for both image and
video data in a purely unsupervised manner. The appearance generator network models the information related to appearance,
including color, illumination, identity or category, while the geometric generator performs geometric warping, such as rotation and
stretching, through generating deformation field which is used to warp the generated appearance to obtain the final image or video
sequences. Two generators take independent latent vectors as input to disentangle the appearance and geometric information from
image or video sequences. For video data, a nonlinear transition model is introduced to both the appearance and geometric generators
to capture the dynamics over time. The proposed scheme is general and can be easily integrated into different generative models. An
extensive set of qualitative and quantitative experiments shows that the appearance and geometric information can be well
disentangled, and the learned geometric generator can be conveniently transferred to other image datasets to facilitate knowledge
transfer tasks.

Index Terms—Unsupervised learning, Deep generative model, Deformable model.
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1 INTRODUCTION

L EARNING disentangled structures of the observations
[1], [2] is a fundamental problem towards controlling

modern deep models and understanding the world. Con-
ceptual understanding requires a disentangled represen-
tation that separates the underlying explanatory factors
and shows the important attributes of the real-world data
explicitly [3], [4]. For instance, given an image dataset of
human faces, a disentangled representation can separate
the face’s appearance attributes, such as color, light source,
identity, gender, and the geometric attributes, such as face
shape and viewing angle. Such disentangled representations
are semantically meaningful not only in building more
transparent and interpretable generative models, but also
useful for a large variety of downstream AI tasks such as
transfer learning and zero-shot inference where humans
excel but machines struggle [5]. It has also been shown that
such disentangled representations are more generalizable
and robust against adversarial attacks [6].

Recently, deep generative models, e.g., generator model,
have shown great promise in learning representation of
images [7], [8]. Most efforts focus on developing sophisti-
cated architectures and training paradigms for sharp and
realistic-looking image synthesis [8], [9], [10]. However, the
learned latent representation is often entangled and not
interpretable. Learning disentangled and interpretable rep-
resentation without supervision for deep generative models
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is challenging, e.g., from face images where no facial land-
marks are given. We are particularly interested in learning
the disentangled representation for the generative models,
since it allows users to specify the desired properties of
the output by controlling the generative factors encoded in
each latent dimension. Many exciting applications require
generative models that can synthesize novel instances while
certain key factors are held fixed, for example, generating a
face image with desired attributes, such as color, face shape,
expression and view (which can be learned and transferred
from another person), while keeping the identity fixed.
There are increasing demands on such generative models
in various domains, such as image manipulation [11], [12],
video generation [13], [14] machine learning fairness [15],
[16], and drug discovery [17].

In this paper, we propose a deformable generator model
that disentangles the appearance and geometric information
and is learned in a purely unsupervised manner under a
unified probabilistic framework. Specifically, our model in-
tegrates two generator networks: one appearance generator
and one geometric generator with two sets of independent
latent factors. The dense deformation fields (displacements
of the coordinates of each pixel) are generated by the
geometric generator, which act on the image intensities
generated by the appearance generator to obtain the final
image through a differentiable warping function. The mod-
el is learned by alternating back-propagation through the
model parameters and latent variables of the two networks.
The proposed model can be applied to both image and
video data. For the spatial-temporal process in video data,
the proposed dynamic deformable model introduces non-
linear transition models for the latent vectors. The transition
model for the appearance factors can generate dynamic
textures which represent non-trackable motion, and the
transition model for the geometric factors can generate
intuitive physics which represent trackable motion. The pro-
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posed method can learn well-disentangled representation.
The learned appearance and geometric representations can
be transferred to other datasets and tasks.

Our contributions are summarized below:

• We propose a deformable generator network to dis-
entangle the appearance and geometric information
in a purely unsupervised manner.

• We propose a dynamic deformable generator net-
work to disentangle the appearance and geometric
information for the spatial-temporal process in video
data.

• We perform extensive experiments both qualitatively
and quantitatively which show that the appearance
and geometric information can be well disentangled
and effectively transferred to other datasets and
tasks.

2 RELATED WORK

Existing work on learning disentangled representation us-
ing deep generative models generally fall into two cate-
gories: implicit learning and explicit learning.

The implicit learning methods encourage the disentan-
glement of latent factors by adding regularization terms in
the loss function, which fall into two categories: the Genera-
tive Adversarial Networks (GANs) [18], [19], [20], [21], [22]
and the Variational Auto-encoders (VAEs) [23], [24], [25],
[26]. InfoGAN [27] and β-VAE [28] are representatives for
the two families respectively, which focus on designing loss
functions to encourage the independence of latent factors.
More specifically, InfoGAN [27], which belongs to the GANs
family, is proposed under the principle of maximization of
the mutual information between the observations and a sub-
set of latent factors. However, its disentangling performance
is sensitive to the choice of the prior and the number of
latent factors. Recently, a contrastive regularization term [29]
is introduced to substantially improve the disentanglement
capability of the InfoGAN. β-VAE [28], from the VAEs fam-
ily, learns disentangled representations by utilizing a VAE
objective but with a stronger penalty on the discrepancy
between the posterior distributions of the latent factors and
independent Gaussian priors, making latent factors to be
independent as much as possible, thus giving a more robust
and stable solution for disentanglement. Deep convolution
inverse graphics network (DC-IGN) [30], a variation of the
VAE, aims to learn disentangled and interpretable represen-
tation for scenes, such as pose, light and texture. To this
end, the training is carried out using a set of inactive and
active transformations. Recently, a term measuring the total
correlation between latent variables is decomposed from
the evidence lower bound to refine the β-VAE for learning
disentangled representations [31]. Though implicit methods
can be learned unsupervisely, the learned representation is
not controllable and not well separated.

The explicit methods, on the other hand, model appear-
ance and geometric explicitly by separate models, originat-
ed from the Active Appearance Models (AAM) which [32],
[33], [34] learn the appearance and geometric information
by performing principal component analysis (PCA) on ap-
pearance and facial landmarks separately. Unlike the AAM
method which requires hand-annotated facial landmarks,

our proposed deformable generator model is purely unsu-
pervised and learns from images or videos alone. Recently,
[35] incorporates the shape geometry into the GANs which
generalizes the linear AAM model to the nonlinear model to
learn well separated appearance and geometric information.
However, this method [35] also requires annotated facial
landmarks for each image during training. Unsupervised
disentanglement of the appearance and geometric infor-
mation is challenging and remains not well-explored. [36]
follows this direction, but their model focused on the auto-
encoder (AE) only, and cannot generate new images with
desired attributes by controlling the latent factors. Moreover,
it is not developed under probabilistic framework as ours.

3 MODEL AND LEARNING ALGORITHM

This section provides the details of the model for 2D-image
data and the corresponding learning and inference algorith-
m. The dynamic deformable model for 3D-video data will
be introduced in the next section.

3.1 Model

Fig. 1. An illustration of the proposed model. The model contains t-
wo generator networks: one appearance generator and one geometric
generator. The two generators are combined by a warping function to
produce the final image. The warping function includes a geometric
transformation operation for image coordinates and a differentiable in-
terpolation operation. The refining operation is optional for improving
the performance of the warping function.

The proposed model contains two generator networks:
one appearance generator and one geometric generator,
which are combined by a warping function to produce the
final images or video frames, as shown in figure 1. Suppose
an arbitrary image or video frame X ∈ RDx×Dy×3 is gener-
ated with two independent latent vectors, Za ∈ Rda which
controls the appearance, and Zg ∈ Rdg which controls the
geometric information. Varying the geometric latent vector
Zg and fixing the appearance latent vector Za, we can trans-
form an object’s geometric information, such as rotating it
with certain angle and changing its shape. On the other
hand, varying Za and fixing Zg , we can change the identity
or the category of the object, while keeping it geometric
information unchanged, such as the same viewing angle or
the same shape.

The model can be expressed as

X = F (Za, Zg; θ) + ε

= Fw(Fa(Za; θa), Fg(Z
g; θg)) + ε (1)



3

where Za ∼ N(0, Ida), Zg ∼ N(0, Idg ), and ε ∼ N(0, σ2ID)
(D = Dx × Dy × 3) are independent. Fw is the warping
function, which uses the deformation field generated by the
geometric generator Fg(Zg; θg) to warp the image generat-
ed by the appearance generator Fa(Za; θa) to synthesize the
final output image X .

3.2 Warping function

A warping function usually includes a geometric trans-
formation operation for image coordinates and a differen-
tiable interpolation (or resampling) operation. The geomet-
ric transformation describes the target coordinate (x, y) for
every location (u, v) in the source coordinate. The geometric
operation only modifies the positions of pixels in an image
without changing the color or illumination. Therefore, the
appearance information and the geometric information are
naturally disentangled by the two generators in the pro-
posed model.

The geometric transformation Φ can be a rigid affine
mapping, as used in the spatial transformer networks [37],
or a non-rigid deformable mapping, which is the case in our
work. Specifically, the coordinate displacement (dx, dy) (or
the dense optical flow field) of each regular grid (x, y) in
the output warped image X are generated by the geometric
generator Fg(Zg; θg). The point-wise transformation in this
deformable mapping can be formulated as(

u

v

)
= Φ(Zg,θg)

(
x

y

)
=

(
x+ dx

y + dy

)
(2)

where (u, v) are the source coordinates of the image gener-
ated by the appearance generator Fa(Za; θa).

Since the evaluated (u, v) by Eq.(2) do not always have
integer coordinates, each pixel’s value of the output warped
image X can be computed by a differentiable interpolation
operation. Let Xa = Fa(Za; θa) denote the image generated
by the appearance generator. The warping function Fw can
be formulated as

X(x, y) = FI(Xa(x+ dx, y + dy)), (3)

where FI is the differentiable interpolation function. We use
a differentiable bilinear interpolation:

X(x, y) =

Dy∑
j

Dx∑
i

Xa(i, j)M(1− |u− i|)M(1− |v− j|) (4)

where M(·) = max(0, ·). The details of back-propagation
through this bilinear interpolation can be found in [37].

The displacement (dx, dy) is used in the deformable con-
volutional networks [38]. The computation of coordinates
displacement (dx, dy) is known as the optical flow estima-
tion [39], [40], [41], [42], [43], [44]. Our work is concerned
with modeling and generating the optical flow, in addition
to estimating the optical flow.

Notice that the displacement (dx, dy) may also indicates
the motion of the objects in the scene, or the change of
viewpoint relative to 3D objects in the scene. It is natural
to incorporate motion and 3D models into the geometric
generator where the change or variation of Zg depends on
the motion and 3D information.

3.3 Inference and learning
To learn this deformable generator model, we introduce
a learning and inference algorithm for two latent vectors,
without designing and learning extra inference networks.
Our method is motivated by a maximum likelihood learn-
ing algorithm for generator networks [45]. Specifically, the
proposed model can be trained by maximizing the log-
likelihood on the training dataset {Xi, i = 1, . . . , N},

L(θ) =
1

N

N∑
i=1

log p(Xi; θ)

=
1

N

N∑
i=1

log

∫
p(Xi, Z

a
i , Z

g
i ; θ)dZai dZ

g
i , (5)

where we integrate out the uncertainties of Zai and Zgi in
the complete-data log-likelihood to get the observed-data
log-likelihood.

We can evaluate the gradient of L(θ) by the following
well-known result, which is related to the EM algorithm:

∂

∂θ
log p(X; θ)

=
1

p(X; θ)

∂

∂θ

∫
p(X,Za, Zg)dZadZg

= Ep(Za,Zg|X;θ)

[
∂

∂θ
log p(X,Za, Zg; θ)

]
(6)

Since the expectation in Eq.(6) is usually analytically in-
tractable, we employ Langevin dynamics to draw samples
from the posterior distribution p(Za, Zg|X; θ) and compute
the Monte Carlo average to estimate the expectation term.
For each observation X , the latent vectors Za and Zg can
be sampled from p(Za, Zg|X; θ) alternately by Langevin
dynamics: we fix Zg and sample Za from p(Za|X;Zg, θ)
∝ p(X,Za;Zg, θ), and then fix Za and sample Zg from
p(Zg|X;Za, θ) ∝ p(X,Zg;Za, θ). At each sampling step,
the latent vectors are updated as follows:

Zaτ+1 = Zaτ +
δ2

2

∂

∂Za
log p(X,Zaτ ;Zgτ , θ) + δEaτ

Zgτ+1 = Zgτ +
δ2

2

∂

∂Zg
log p(X,Zgτ ;Zaτ , θ) + δEgτ (7)

where τ is the number of steps in the Langevin sampling,
Eaτ , Egτ are independent standard Gaussian noise to prevent
the sampling from being trapped in local modes, and δ is the
step size. The complete-data log-likelihood can be evaluated
by

log p(X,Za;Zg, θ) = log [p(Za)p(X|Za, Zg, θ)]

= − 1

2σ2
‖X − F (Za, Zg; θ)‖2 − 1

2
‖Za‖2 + C1

log p(X,Zg;Za, θ) = log [p(Zg)p(X|Za, Zg, θ)]

= − 1

2σ2
‖X − F (Za, Zg; θ)‖2 − 1

2
‖Zg‖2 + C2 (8)

where C1 and C2 are normalizing constants. It can be shown
that, given sufficient sampling steps, the sampledZa andZg

follow their joint posterior distribution.
Obtaining fair samples from the posterior distribution by

MCMC is highly computational consuming. In this paper,
we run persistent sampling chains. That is, the MCMC
sampling at each iteration starts from the sampled Za and
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Algorithm 1 Learning and inference algorithm
Input:

(1) training examples {Xi ∈ RDx×Dy×3, i = 1, . . . , N}
(2) number of Langevin steps l
(3) number of learning iterations K

Output:
(1) learned parameters θ
(2) inferred latent vectors {Zai , Z

g
i , i = 1, . . . , N}

1: Let k ← 0, initialize θ.
2: Initialize {Zai , Z

g
i , i = 1, . . . , N}

repeat
3: Inference back-propagation: For each i, run l steps
of Langevin dynamics to alternately sample Zai from
p(Zai |Xi;Z

g
i , θ), while fixing Zgi ; and sample Zgi from

p(Zgi |Xi;Z
a
i , θ), while fixing Zai . Starting from the cur-

rent Zai and Zgi , each step follows Eq.(7).
4: Learning back-propagation: Update θk+1 ← θk +
ηkL

′(θk), with learning rate ηk, where L′(θk) is com-
puted according to Eq.(9).
5: Let k ← k + 1

until k = K

Zg in the previous iteration. The persistent update results
in a chain that is long enough to sample from the posterior
distribution, and vastly reduces the computational burden
of the MCMC sampling. The convergence of stochastic gra-
dient descent based on persistent MCMC has been studied
in [46].

For each training example Xi, we run the Langevin dy-
namics following Eq.(7) to get the corresponding posterior
samples Zai and Zgi . The samples are then used for comput-
ing the gradients over parameters as shown in Eq.(6). More
precisely, the gradient of log-likelihood over θ is estimated
by Monte Carlo approximation:

∂

∂θ
L(θ) ≈ 1

N

N∑
i=1

∂

∂θ
log p(Xi, Z

a
i , Z

g
i ; θ)

=
1

N

N∑
i=1

1

σ2
(Xi − F (Zai , Z

g
i ; θ))

∂

∂θ
F (Zai , Z

g
i ; θ). (9)

The whole algorithm iterates through two steps: (1)
inferential step which infers the latent vectors by Langevin
dynamics, and (2) learning step which learns the network
parameters θ by stochastic gradient descent. Gradient com-
putations in both steps are powered by back-propagation.
Algorithm 1 describes the details of the learning and infer-
ence algorithm.

Besides the above learning and inference method, the
proposed model can also be learned by VAE [23] with an
extra inference network to infer (Za, Zg), or learned by
GAN [18] with an extra discriminator network. In this work,
we use the current learning and inference algorithm mainly
for the sake of simplicity, so that we do not need to recruit
to extra networks.

4 DYNAMIC DEFORMABLE MODEL AND LEARNING
ALGORITHM

For the spatial-temporal process in video, we propose a
dynamic deformable model to disentangle the appearance
and geometric information. Specifically, a sequence of ap-
pearance latent factors {Zat , t = 0, . . . , T}, and a sequence
of geometric latent factors {Zgt ,= 0, . . . , T} are fed into
two generator networks, which are combined by a warping
function to produce the observed video sequence X =
{X0, . . . , XT }. Suppose Za0 ∈ Rda and Zg0 ∈ Rdg are the
appearance and geometric latent factors of the first frame,
then

Zat = Za0 + sat ,

Zgt = Zg0 + sgt , (10)

where sat ∈ Rda and sgt ∈ Rdg are the hidden state vectors
that capture the dynamic relation among the video sequence
data, sa0 = sg0 = 0. Inspired by [47] which employs linear
auto-regressive model to model the dynamic textures, we
introduce non-linear auto-regressive models to model the
transition between the hidden state vectors sat and sgt :

sat+1 = f(sat , ξ
a
t+1;α)

sgt+1 = f(sgt , ξ
g
t+1;β) (11)

where ξat+1 and ξgt+1 are independent Gaussian noise vec-
tors, that encode the randomness in the transition from sat to
sat+1 and sgt to sgt+1. f(·;α) and f(·;β) are two feedforward
neural networks or multi-layer perceptrons, where α and β
denote the weight and bias parameters of the two networks.

The dynamic deformable generator model can be ex-
pressed as

Xt = Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg)) + εt (12)

where Fw is the warping function as described in Section
3.2. Fa(·; θa) and Fg(·; θg) are the emission models, more
specially, the appearance generator and geometric genera-
tor, θa and θg denote the weight and bias parameters of the
two generator networks. εt ∼ N(0, σ2ID) is the independent
residual error.

The proposed dynamic deformable generator model
can be learned by alternating back-propagation for two
sequences of latent vectors without introducing assisting
inference network. Our method is motivated by a maximum
likelihood learning algorithm for time series data. Specifical-
ly, let θ = {θa, θg, α, β} consists of all the network param-
eters to be learned. Let Za = {Za0 , ξa1 , . . . , ξaT } denotes the
appearance related latent vectors and Zg = {Zg0 , ξ

g
1 , . . . , ξ

g
T }

be the geometric related latent vectors. Both Za and Zg can
be inferred from the observed video sequences X. We can
formulate

X = F (Za,Zg;θ) + ε (13)

where F (·, ·;θ) composes Fa, Fg and f over time, and ε =
{εt, t = 0, . . . , T} denotes the observation errors.
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The proposed model can be trained by maximizing
the log-likelihood on the training video dataset {Xi, i =
1, . . . , N},

L(θ) =
1

N

N∑
i=1

log p(Xi;θ)

=
1

N

N∑
i=1

log

∫
p(Xi,Z

a
i ,Z

g
i ;θ)dZa

i dZ
g
i , (14)

The gradient of the observed-data log-likelihood L(θ) can
be evaluated similarly as in Eq. (6) of Section 3.3,

∂

∂θ
log p(X;θ) = Ep(Za,Zg|X;θ)

[
∂

∂θ
log p(X,Za,Zg;θ)

]
(15)

We employ the Monte Carlo average to approximate the
above expectation. Specifically, we sample from the posteri-
or distribution p(Za,Zg|X;θ) alternately by Langevin dy-
namics to infer the group of latent vectors Za and Zg. We fix
Zg and sample Za from p(Za|X;Zg,θ) ∝ p(X,Za;Zg,θ),
and then fix Za and sample Zg from p(Zg|X;Za,θ) ∝
p(X,Zg;Za,θ). At each sampling step, the group of latent
vectors are updated as follows:

Za
τ+1 = Za

τ +
δ2

2

∂

∂Za
log p(X,Za

τ ;Zg
τ ,θ) + δEaτ

Zg
τ+1 = Zg

τ +
δ2

2

∂

∂Zg
log p(X,Zg

τ ;Za
τ ,θ) + δEgτ (16)

where τ is the number of steps in the Langevin sampling
(not to be confused with the time step of the dynamic
model,t), Eaτ , Egτ are independent standard Gaussian noise
to prevent the sampling from being trapped in local modes,
and δ is the step size. Za

τ = {Zaτ,0, ξaτ,1, . . . , ξaτ,T } and
Zg
τ = {Zgτ,0, ξ

g
τ,1, . . . , ξ

g
τ,T } denote all the sampled appear-

ance and geometric latent vectors at time step τ .
Let p(X|Za,Zg,θ) ∼ N(F (Za,Zg;θ), σ2I), where I is

the identity matrix whose dimension matches that of X.
Let p(Za) ∼ N(0, Ia) and p(Zg) ∼ N(0, Ig)be the prior
distribution of Za and Zg, Ia and Ig are the identity matrices
whose dimensions match that of Za and Zg. The complete-
data log-likelihood can be evaluated by (assuming σ2 = 1,
and up to an additive constant)

log p(X,Za;Zg,θ) = log [p(Za)p(X|Za,Zg,θ)]

= −1

2
(‖X− F (Za,Zg;θ)‖2 + ‖Za‖2)

= −1

2
(
T∑
t=0

‖Xt − Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg))‖2+

‖Za0 ‖2 +
T∑
t=1

‖ξat ‖2)

log p(X,Zg;Za,θ) = log [p(Zg)p(X|Za,Zg,θ)]

= −1

2
(‖X− F (Za,Zg;θ)‖2 + ‖Zg‖2)

= −1

2
(
T∑
t=0

‖Xt − Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg))‖2+

‖Zg0‖2 +
T∑
t=1

‖ξgt ‖2) (17)

To infer the detailed components in Za = {Za0 , ξa1 , . . . , ξaT }
and Zg = {Zg0 , ξ

g
1 , . . . , ξ

g
T }, for any fixed time point t0,we

have
∂

∂ξat0
log p(X,Za

τ ;Zg
τ ,θ)

=
T∑
t=t0

(Xt − Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg)))×

∂Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg))

∂Fa(Zat ; θa)

∂Fa(Zat ; θa)

∂Zat

∂sat
∂ξat0

− ξat0

∂

∂Za0
log p(X,Za

τ ;Zg
τ ,θ)

=
T∑
t=0

(Xt − Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg)))×

∂Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg))

∂Fa(Zat ; θa)

∂Fa(Zat ; θa)

∂Zat
− Za0

∂

∂ξgt0
log p(X,Zg

τ ;Za
τ ,θ)

=
T∑
t=t0

(Xt − Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg)))×

∂Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg))

∂Fg(Z
g
t ; θg)

∂Fg(Z
g
t ; θg)

∂Zgt

∂sgt
∂ξgt0

− ξgt0

∂

∂Zg0
log p(X,Zg

τ ;Za
τ ,θ)

=
T∑
t=0

(Xt − Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg)))×

∂Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg))

∂Fg(Z
g
t ; θa)

∂Fg(Z
g
t ; θa)

∂Zgt
− Zg0 (18)

where ∂sat
∂ξat0

and ∂sgt
∂ξgt0

can be computed recursively.
The learning algorithm iterates through two steps: (1)

inference step: infers the two group of latent vectors Za and
Zg through the Langevin dynamics, when the current θ is
given, according to Eq.(16∼ 18). (2) Learning step: update
the network parameters θ by stochastic gradient descent,
when the group of samples Za and Zg are given, according
to Eq. (14) and (15), more precisely,

∂

∂θ
L(θ) ≈ 1

N

N∑
i=1

∂

∂θ
log p(Xi,Z

a
i ,Z

g
i ;θ)

=
1

N

N∑
i=1

1

σ2
(Xi − F (Za

i ,Z
g
i ;θ))

∂

∂θ
F (Za

i ,Z
g
i ;θ). (19)

where θ = {θa, θg, α, β}, i indexes the video sequence in
the training set. For the i-th video sequence, the derivative
with respect to the components of θ are (for convenience
and simplicity, omit the index i, assuming σ2 = 1)

∂L

∂θa
=

T∑
t=0

(Xt − Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg)))×

∂Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg))

∂Fa(Zat ; θa)

∂Fa(Zat ; θa)

∂θa
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∂L

∂θg
=

T∑
t=0

(Xt − Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg)))×

∂Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg))

∂Fg(Z
g
t ; θg)

∂Fg(Z
g
t ; θg)

∂θg

∂L

∂α
=

T∑
t=0

(Xt − Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg)))×

∂Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg))

∂Fa(Zat ; θa)

∂Fa(Zat ; θa)

∂Zat

∂sat
∂α

∂L

∂β
=

T∑
t=0

(Xt − Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg)))×

∂Fw(Fa(Zat ; θa), Fg(Z
g
t ; θg))

∂Fg(Z
g
t ; θg)

∂Fg(Z
g
t ; θg)

∂Zgt

∂sgt
∂β

(20)

where ∂sat
∂α and ∂sgt

∂β can again be computed recursively. The
gradient computations in both the inferential step and the
learning step are powered by back-propagation through
time (BPTT). Algorithm 2 describes the details of the learn-
ing and inference algorithm powered by BPTT for the video
sequences.

It is worth to note that, although the variational inference
is convenient to be employed for learning a generative
model, for this dynamic deformable model, it is difficult
to design the inference models to infer the sequence of
the group of latent vectors Za = {Za0 , ξa1 , . . . , ξaT } and
Zg = {Zg0 , ξ

g
1 , . . . , ξ

g
T } from the video sequence X =

{X0, . . . , XT }. In contrast, the proposed learning and in-
ference algorithm does not need to design and learn such
an extra inference model, and is easy to be implemented.
Specifically, we directly sample from the posterior distribu-
tion p(Za,Zg|X;θ) to implement the inference step in our
dynamic deformable model, which is powered by BPTT.
Moreover, the proposed learning method directly aims at
maximum likelihood, while variational inference targets at
maximizing a lower bound.

5 EXPERIMENTS

In this section, we design 5 groups of experiments to demon-
strate that our proposed deformable generator framework
consistently disentangles the appearance and geometric
information. The parameters and architectures of the de-
formable generator network are summarized in subsection
5.6. In the following experiments, in each row we visualize
the generated samples by varying a certain unit of the latent
factors within the range [−γ, γ], where we set γ to be 10.
The code and results can be found at the project page 1

5.1 Experiment 1: Learn the disentangled basis func-
tions for appearance and geometry

To study the performance of the proposed method in dis-
entangling the appearance and geometric information, we
first investigate the appearance basis functions and the
geometric basis functions of the learned model. We train

1. https://andyxingxl.github.io/Deformable-generator/

Algorithm 2 Learning and inference algorithm for video
sequences
Input:

(1) training examples {Xi ∈ RDx×Dy×3×(T+1), i =
1, . . . , N}
(2) number of Langevin steps l
(3) number of learning iterations K

Output:
(1) learned parameters θ = {θa, θg, α, β}
(2) inferred group of latent vectors,
Za

i = {Za0,i, ξa1,i, . . . , ξaT,i} and Zg
i = {Zg0,i, ξ

g
1,i, . . . , ξ

g
T,i}

1: Let k ← 0, initialize θ = {θa, θg, α, β}.
2: Initialize {Za

i ,Z
g
i , i = 1, . . . , N}

repeat
3: Inference back-propagation through time: For each
i, run l steps of Langevin dynamics to alternately sam-
ple Za

i from p(Za
i |X;Zg

i ,θ), while fixing Zg
i ; and sam-

ple Zg
i from p(Zg

i |X;Za
i ,θ), while fixing Za

i . Starting
from the current Za

i and Zg
i , each step follows Eq.(16∼

18).
4: Learning back-propagation through time: Update
θk+1 ← θk + ηkL

′(θk), with learning rate ηk, where
L′(θk = {θka , θkg , αk, βk}) is computed according to
Eq.(19,20).
5: Let k ← k + 1

until k = K

the deformable generator on 10,000 face images random-
ly sampled from CelebA dataset [48]. Some examples in
CelebA are shown in Figure 2, which are processed by
the OpenFace [49] and further cropped to 64 × 64 pixels.
To better understand how our model works, we show the
output of the appearance generator overlaid by a canonical
grid in the second row of figure 2. The canonical faces in
the front view are learned by the appearance generator. By
warping the output of the appearance generator with the
deformation fields generated by the geometric generator, we
obtain the final reconstructed images, which are shown in
the third row of figure 2. The deformation fields, which are
the output of the geometric generator, are illustrated by the
deformed grids overlaid on the reconstruct images.

The appearance and the geometric latent factors can be
interpreted as the projection or reconstruction coefficients
along the direction of the corresponding appearance and
geometric basis functions. The appearance basis function of
the learned model can be demonstrated by the generated
images from the combinations of the appearance latent
factors Za and the geometric latent factors Zg as follows:
(1) set the geometric latent factor Zg to zero, and (2) vary
one dimension of the appearance variable Za from [−γ, γ]
with a uniform step 2γ

10 , while set the other dimensions of
Za to zero. Some generated images are shown in figure
3. Similarly, the geometric basis function of the learned
model can be demonstrated as follows: (1) set Za to be a
fixed value, and (2) each time vary one dimension of the
geometric latent factor Zg from [−γ, γ] with a uniform step
2γ
10 , while keeping the other dimensions of Zg at zero. Some
generated results are shown in figure 4.

As we can observe from figure 3, (1) although the train-

https://andyxingxl.github.io/Deformable-generator/


7

Fig. 2. Example training images from CelebA are illustrated at the first row. The training set contains 10000 images from CelebA, and they are
cropped to 64 × 64 pixels by the OpenFace. These faces have different colors, illuminations, identities, viewing angles, shapes, and expressions.
The second row shows the output of the appearance generator overlapped with the canonical grid. The third row demonstrates the deformation
fields which is the output of the geometric generator. The deformation fields are visualized by the deformed grids overlaid on the reconstructed
images.

Fig. 3. Typical appearance basis functions, visualized by the generated
images that interpolate the appearance latent factors along the basis
functions. Each dimension of the appearance latent factors encodes
appearance information such as color, illumination and gender. In the
fist line, the color of background and the gender change. In the second
line, the moustache of the man and the hair of the woman vary. In the
third line, the skin color changes from dark to white. In the fourth line,
the illumination lighting changes from the left-side of the face to the right-
side of the face.

Fig. 4. Representative geometric basis functions, visualized by the
generated images that interpolate the geometric latent factors along the
basis functions. Each dimension of the geometric latent factors encodes
fundamental geometric information such as shape and viewing angle. In
the fist line, the shape of the face changes from fat to thin from left to
the right. In the second line, the pose of the face varies from left to right.
In the third line, from left to right, the vertical tilt of the face varies from
downward to upward. In the fourth line, the face width changes from
stretched to cramped.

ing faces from CelebA have different viewing angles, the
appearance basis functions only encode front-view informa-
tion, and (2) each dimension of the appearance latent vector
encodes appearance information such as color, illumination
and identity. For example, in the fist line of figure 3, from
left to right, the color of background varies from black to
white, and the identity of the face changes from a women to

a man. In the second line of figure 3, the moustache of the
man becomes thicker when the value of the corresponding
dimension of Za decreases, and the hair of the woman
becomes denser when the value of the corresponding di-
mension of Za increases. In the third line, from left to right,
the skin color varies from dark to white, and in the fourth
line, from left to right, the illumination lighting changes
from the left-side of the face to the right-side of the face.

From figure 4, we have the following interesting obser-
vations. (1) The geometric basis functions do not encode
any appearance information. The color, illumination and
identity are the same across these generated images. (2)
Each dimension of the geometric latent vector encodes fun-
damental geometric information such as shape and viewing
angle. For example, in the fist line of figure 4, the shape
of the face changes from fat to thin from left to the right;
in the second line, the pose of the face varies from left to
right; in the third line, from left to right, the tilt of the face
varies from downward to upward; and in the fourth line,
the expression changes from stretched to cramped.

From the results in figures 3 and 4, we find that the
appearance and geometric information of face images have
been disentangled effectively. Therefore, we can apply the
geometric warping (e.g. geometric basis functions in figure
4) learned by the geometric generator to all the canonical
faces (e.g. appearance basis functions in figure 3) learned by
the appearance generator. Figure 5 demonstrates the effect
of applying representative geometric basis functions to the
appearance basis functions in figure 3. Comparing figure
3 with figure 5, we find that the geometric basis functions
which are corresponding to the rotation and shape warping
operations do not modify the identity information of the
canonical faces, which corroborates the disentangling power
of the proposed deformable generator model.

We next quantitatively study the covariance between
the basis functions and input images with geometric varia-
tion. We use images with ground-truth geometric attributes,
specifically the multi-view face images from the Multi-Pie
dataset [50]. The images consist of 5 viewing angles {−30◦,
−15◦, 0◦, 15◦, 30◦}. For each viewing angle, we randomly
sampled 100 images, which are fed into the learned model
to infer their geometric latent vector Zg and appearance
latent vector Za. For each viewing angle θ , we compute
the average Z̄gθ and Z̄aθ of the inferred latent vectors. For
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(a) Rotation warping.

(b) Shape warping.

Fig. 5. Applying the geometric basis functions, (a) rotation warping and
(b) shape warping, learned by the geometric generator to the canonical
faces generated by the appearance generator. Compared with figure 3,
only the pose information varies, and the identity information is kept in
the process of warping.

each dimension i of Zg , we construct a 5-dimensional vector
Z̄g(i) = [Z̄g−30◦(i), Z̄g−15◦(i), Z̄g0◦(i), Z̄g15◦(i), Z̄g30◦(i)]. Simi-
larly, we construct a 5-dimensional vector Z̄a(i) for each
dimension of Za. We normalize the viewing angles vector
θ = [−30,−15, 0, 15, 30] to have unit norm. Finally, we com-
pute the covariance between each dimension of the latent
vectors (Zg, Za) and input images with view variations as
follows:

Rgi = |Z̄g(i)>θ|, Rai = |Z̄a(i)>θ| (21)

where i denotes the i-th dimension of latent vector Zg or
Za, and | · | denotes the absolute value. We summarize the
the covariance Rg and Ra of the geometric and appearance
latent vectors in figure 6. Rg tends to be much larger than
Ra.

Fig. 6. Absolute value of covariance between each dimension of the
geometric (or appearance) latent vectors and view variations for the
face images from Multi-Pie. The left subfigure shows covariance with
the geometric latent vector; the right subfigure shows covariance with
the appearance latent vector.

Moreover, for the largest Rgi and largest Rai , we plot

(a)

(b)

Fig. 7. (a) Covariance relationship between the mean latent vector Z̄g(i)
(or Z̄a(i)) and viewing angles vector θ. We choose two dimensions of
Zg (Zg

5 and Zg
38, left and middle) with the largest covariance and one

dimension of Za with the largest covariance (Za
25, right). (b) Images gen-

erated by varying the values of the three dimensions in (a) respectively,
while fixing the values of other dimensions to be zero.

covariance relationship between the latent vector Z̄g(i) (or
Z̄a(i)) and viewing angles vector θ in figure 7. As we can
observe from the left and middle subfigures from figure 7,
the Z̄g(i) corresponding to the two largest Rgi (Rg5 , Rg38)
is obviously inversely proportional or proportional to the
change of viewing angle. However, as shown in the right
subfigure, the Z̄a(i) corresponding to the largest Rai (Ra25)
does not have strong covariance with the change of viewing
angle. We wish to point out that we should not expect Za

to encode the identity exclusively and Zg to encode the
view exclusively, because different persons may have shape
changes, and different views may have lighting or color
changes.

Furthermore, we generate face images by varying the
dimension of Zg corresponding to the two largest covari-
ance responses from values [−γ,+γ] with a uniform step
2γ
10 , while holding the other dimensions of Zg to zero.
Similarly, we generate face images by varying the dimension
of Za corresponding to the largest covariance responses
from values [−γ,+γ] with a uniform step 2γ

10 , while holding
the other dimensions of Za to zero. The generated images
are shown in figure 7(b). We can make several important
observations. (1) The variation of viewing angle in the first
two rows is very obvious, and variation in the first row is
larger than that the one in the second row. This is consistent
with the fact that Rg5 > Rg38 and with the observation that
the slope in the left subfigure of figure 7(a) is steeper than
that of the middle subfigure of figure 7(a). (2) In the first
row, the faces rotate from right to left, where Rg5 is inversely
proportional to the viewing angle. In the second row, the
faces rotate from left to right, where Rg38 is proportional to
the viewing angle. (3) It is difficult to find obvious variation
in viewing angle in the third row. These generated images
further verify that the geometric generator of the proposed
model mainly captures geometric variation, while the ap-
pearance generator is not sensitive to geometric variation.
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Fig. 8. Transferring and recombining geometric and appearance vectors.
The first row shows 7 unseen faces from CelebA. The second row
shows the generated faces by transferring and recombining 2th-7th
faces’ geometric vectors with first face’s appearance vector. The third
row shows the generated faces by transferring and recombining the 2th-
7th faces’ appearance vectors with the first face’s geometric vector in
the first row.

5.2 Experiment 2: Learn to transfer the appearance and
geometric knowledge

The disentangling power of the proposed model can be
employed to transfer and recombine the geometric and
appearance information from different faces. Specifically,
we first feed 7 unseen images from CelebA into our de-
formable generator model to infer their appearance vectors
Za1 , Za2 ,. . . ,Za7 and geometric vectors Zg1 , Zg2 ,. . . ,Zg7 using
the Langevin dynamics (with 300 steps) in Eq.(7). Then,
we transfer and recombine the appearance and geometric
vectors and use {Za1 , Z

g
2}, . . . , {Za1 , Z

g
7} to generate six new

face images, as shown in the second row of figure 8. We
also transfer and recombine the appearance and geometric
vectors and use {Za2 , Z

g
1},. . . , {Za7 , Z

g
1} to generate another

six new faces, as shown in the third row of figure 8. From the
2nd to the 7th column, the images in the second row have
the same appearance vector Za, but the geometric latent
vectors Zg are swapped between each image pair. As we can
observe from the second row of figure 8, (1) the geometric
information of the original images are swapped in the
synthesized images, and (2) the inferred Zg can capture the
view information of the unseen images. The images in the
third row of figure 8 have the same geometric vector Zg1 , but
the appearance vectors Za are swapped between each image
pair. From the third row of figure 8, we observe that (1)
the appearance information are exchanged. (2) The inferred
Za capture the color, illumination and coarse appearance
information but lose more nuanced identity information.
Only finite features are learned from 10k CelebA images,
and the model may not contain the features necessary to
model an unseen face accurately.

Moreover, we can transfer the learned geometric knowl-
edge from one dataset to another unseen dataset easily.
We first train the proposed deformable generator model
on the grey face expression dataset CK+ [51]. Following
the same experimental protocol as the last subsection, we
can investigate the interpolation along the appearance basis
functions and the geometric basis functions. The disentan-
gled results are shown in figure 9. We do not use the labels
of expressions provided by CK+ dataset in the learning.
Although the dataset contains faces of different expressions,
the learned appearance basis function usually encodes a
neutral expression. The geometric basis function controls
major variation in expression, but does not change the
identity information.

Then, we try to transfer the learned geometric knowl-

(a) Interpolation of appearance latent factors.

(b) Interpolation of geometric latent factors.

(c) Transferring the expression in (b) to the face images in Multi-PIE
dataset.

Fig. 9. Interpolation examples of (a) appearance basis functions and (b)
geometric basis functions. (c) Transferring the learned expression to the
face images in Multi-PIE dataset.

edge, such as expression, from CK+ to another color face
dataset, Multi-Pie [50], by fine-turning the appearance gen-
erator on the target face dataset while fixing the parameters
of the geometric generator. Figure 9 (c) shows the result of
transferring the expressions of 9 (b) into the faces of Multi-
Pie. The expressions from the gray faces of CK+ have been
transferred into the color faces of Multi-Pie.

Furthermore, we quantitatively study the power of the
proposed deformable generator model to transfer the ge-
ometric knowledge learned from one dataset into another
unseen dataset. Specifically, given 1000 front-view faces
from the Multi-Pie dataset [50], we can fine-tune the ap-
pearance generator’s parameters while fixing the geometric
generator’s parameters, which are learned from the CelebA
dataset. Then we can reconstruct unseen images that have
various viewpoints. In order to quantitatively evaluate the
geometric knowledge transfer ability of our model, we com-
pute the reconstruction error on 5000 unseen images from
Multi-Pie for the views {−30◦, −15◦, 0◦, 15◦, 30◦}, with
1000 faces for each view. We compare the proposed model
with the state-of-art generative models, such as VAE [3], [23]
and ABP [45]. For fair comparison, we first train the origi-
nal non-deformable VAE and ABP models with the same
CelebA training set of 10,000 faces, and then fine-tune them
on the 1000 front-view faces from the Multi-Pie dataset. We
perform 10 independent runs and report the mean square
reconstruction error per image and standard derivation over
the 10 trials for each method under different views as shown
in table 1. Deformable generator network obtains the lowest
reconstruction error. When the testing images are from the
view closing to that of the training images, all the three
methods can obtain small reconstruction errors. When var-
ious views of the testing images are included, deformable
generator network obtains obviously smaller reconstruction
error. Our model benefits from the transferred geometric
knowledge learned from the CelebA dataset, while both
the non-deformable VAE and ABP models cannot efficiently
learn or transfer purely geometric information.
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TABLE 1
Comparison of the Mean Square Reconstruction Errors (MSRE) per
image (followed by the corresponding standard derivations inside the

parentheses) of different methods for unseen multi-view faces from the
Multi-Pie dataset.

MSRE
Methods VAE [23] ABP [45] Ours

30◦ 110.99± 0.11 117.28± 0.12 89.94± 0.10
15◦ 88.98± 0.09 94.81± 0.10 70.64± 0.08
0◦ 48.78± 0.05 48.36± 0.06 46.10± 0.06
−15◦ 87.89± 0.10 94.12± 0.11 75.11± 0.09
−30◦ 107.94± 0.12 120.58± 0.13 92.66± 0.11

all views 89.02± 0.13 94.66± 0.12 76.52± 0.10

5.3 Experiment 3: Learn on non-face dataset
We could transfer and learn the model on more general
dataset other than face images. For example, the learned
geometric information from the CelebA face images can be
directly transferred to the faces of animals such as cats and
monkeys, as shown in figure 10(a). The cat and monkey
faces rotate from left to right and the shape of the animal
faces changes from fat to thin, when the warpings learned
from human faces are applied.

We also learn our model on the CIFAR-10 [52] dataset,
which includes 50,000 training examples of various object
categories. To show the result, we randomly sample and fix
Za from N(0, Ida). For Zg , we interpolate one dimension
from −γ to γ and fix the other dimensions to 0. Figure 10(b)
shows interpolated examples generated by model learned
from the car category. The results show that each dimen-
sion of Zg controls a specific geometric transformation, i.e.,
shape and rotation warping.

(a) Transferring the learned geometry from CelebA to animal faces.

(b) Geometric interpolations that learned from CIFAR-10.

Fig. 10. Transferring and learning model from non-face datasets. (a)
Geometric interpolation results of cat and monkey faces after applying
the rotation and shape warping learned from CelebA. (b) Geometric
interpolation results of the model learned from car category of CIFAR-10
dataset.

We next learn our model on the MNIST dataset of 10
classes of digits. In this experiment, Za is set to be the
prior discrete one-hot label, while Zg is the continues latent
vector. Figure 11 demonstrates the interpolated examples.

On each row, we set Za to be one of the discrete label, while
interpolating one dimension of the geometric latent factor
Zg from [−γ, γ] with a uniform step 2γ

10 . In the left subfigure
of 11, the first column represent the images generated by
the one-hot Za (before warping by the deformable fields
generated by Zg), and the remain 10 columns show the
results by interpolating the shape factor of Zg . As we can
observe, from left to right, the shape of the digits change
from large to small. Similarly, in the right subfigure of 11,
the viewing angle of the digits vary from left to right.

5.4 Experiment 4: Unsupervised landmark localization

In this subsection, we evaluate the performance of de-
formable generator model on the task of unsupervised face
landmark localization. The experimental results are evalu-
ated on the Multi-Attribute Facial Landmark (MAFL) [53]
dataset, which contains landmark locations (eyes, nose, and
mouth corners) manually annotated for 19k training and 1k
test images.

In this experiment, we train our deformable generator
model on the CelebA dataset without any supervision. Ac-
cording to the evaluation protocol of the previous work [36],
[54], employing the provided training annotations in MAFL,
we train a landmark regressor post-hoc on the learned
deformation fields from the geometric generator. It is worth
to mention that the annotation from the MAFL training set is
only employed to train the regressor, while our deformable
generator model is trained fully unsupervisedly and fixed.
The regressor composes of a MLP with 2-layers. The flat-
tened deformation fields (vectors of size 64×64×2), learned
from the geometric generator, are fed as input to a hidden
layer with 100 neurons, followed the ReLU activation func-
tion and an output layer with 10 neurons to predict the 2d
spatial coordinates (x, y) for the five landmarks locations
(eyes, nose, and mouth corners). The L1 loss is used as the
objective function for the landmark regressor.

The first row of figure 12 shows the examples of the
testing images. The second row of figure 12 demonstrates
the estimated deformed grid. The deformation grid is ob-
tained by warping the canonical grid with the deformation
fields learned from the geometric generator. The third row of
figure 12 shows the canonical grid overlaid on the canonical
faces learned from the appearance generator. The fourth row
of figure 12 demonstrates the semantic landmark locations
overlapped on the testing images. The green points denote
the ground truth, and the red points denote the predictions.
As we observe from figure 12, the learned deformation
fields could be used for an effective mapping between the
landmark locations on the originally unaligned faces and
those on the canonical texture faces.

We further quantitatively evaluate the landmark local-
ization by reporting the mean error as a percentage of the
inter-ocular distance on the MAFL testing set. We compare
our deformable generator model with the other 5 state-of-
the-art landmark localization methods [36], [53], [54], [55],
and report the results on table 2. As we can observe from
table 2, our method outperforms the other state-of-the-art
methods, because our method estimate the deformation
field more accurately, even though we never explicitly train
the deformable generator to learn correspondence.
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Fig. 11. Interpolation results by the geometric latent factors of the model learned from the MNIST dataset. Each row demonstrates the results of
interpolating one dimension of the geometric latent factor, while keeping Za to be one discrete label. In the left subfigure, the first column represent
the images generated by the one-hot Za, and the remain 10 columns show the results by interpolating the shape factor of Zg . As we can observe,
from left to right, the shape of the digits change from large to small. Similarly, as we can observe from the right subfigure, the viewing angle of the
digits vary from left to right by interpolating the view factor of Zg

Fig. 12. Unsupervised landmark localization. Row 1: the samples of the testing images from the MAFL dataset. Row 2: the deformation grid
estimated from warping the the canonical grid with the coordinate displacement (deformation fields) learned from the geometric generator. Row 3:
the canonical grid overlapped on the canonical faces learned from the appearance generator. Row 4: the semantic landmark locations. The green
points denote the ground truth, and the red points denote the predictions.

TABLE 2
Comparisons of the mean error of unsupervised landmark prediction

on the MAFL test set. Smaller is better.

TCDCN [53] Thewlis et al. [54] Dense-DAE [36] MTCNN [55] Ours
7.95 5.83 5.45 5.39 5.18

5.5 Experiments for Dynamic Deformable Generator

To study the performance of the proposed dynamic de-
formable generator in disentangling the appearance and
geometric information from the video sequences, we exper-
iment on the MUG [56] facial expression video dataset. The

dataset consisted of 86 subjects. The video sequences of each
subject represent one of the six facial expressions: happiness,
sadness, anger, fear, disgust, and surprise. We crop the face
regions by the OpenFace and scaled to 64 × 64 pixels ×60
frames. Some example video sequences of MUG are shown
in the first 3 rows of figure 13 and figure 14.

To evaluate the performance of disentanglement on
the video sequences, we first consider the experiment on
transferring and recombining the appearance and geometric
information from different video sequences. Specifically,
consider two video sequences from different persons. We
first learn and infer the sequences of appearance and geo-
metric latent factors from the two videos as {Za1,t, Z

g
1,t, t =
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(a) Three original video sequences of the same female. (b) Three original video sequences of the same male

(c) Recombine the appearance from (a) and geometry from (b). (d) Recombine the appearance from (b) and geometry from (a)

Fig. 13. Transfer and recombine the appearance and geometric information from different video sequences. (a) Three original video sequences
of the same female with expressions of happiness, sadness and surprise; (b) Three original video sequences of the same male with expressions
of anger, disgust, and happiness. (c) Transfer and recombine the appearance from female in (a), and the geometry from the male in (b), so that
the generated video sequences in (c) inherit the appearance from the female but the shape and expressions (anger, disgust, and happiness) from
the male. (d) Transfer and recombine the appearance from the male in (b), and the geometry from the female in (a), so that the generated video
sequences in (d) inherit the appearance from the male but the shape and expressions (happiness, sadness and surprise) from the female.

0, . . . , T} and {Za2,t, Z
g
2,t, t = 0, . . . , T}. Then we transfer

and recombine them to generate new video sequences. More
specifically, we expect that recombining the sequence of
appearance latent factors from the the first person and the
sequence of geometric latent factors from the second person,
{Za1,t, Z

g
2,t, t = 0, . . . , T}, will generate a new video that

inherits the appearance information from the first person,
while inherits the dynamic geometric information (includ-
ing both the face shape and dynamic face expression) from
the second person. Similarly, we also expect that recombin-
ing the sequence of appearance latent factors from the the
second person and the sequence of geometric latent factors
from the first person, {Za2,t, Z

g
1,t, t = 0, . . . , T}, will generate

another new video that inherits the appearance information
from the second person, while inherits the dynamic geomet-
ric information from the first person.

Figure 13 demonstrates the experimental results on
transferring and recombining the appearance and geometric
information from different video sequences. Figures 13 (a)
and (b) show 6 different expressional video sequences of a
female and a male. Each row of figure 13 (c) demonstrates
a generated video sequence by recombining the sequence of
appearance latent factors from the same row of the figure 13
(a) and the sequence of geometric latent factors of the same
row from the figure 13 (b). Figure 13 (d) demonstrates the
generated videos sequences by recombining the sequence of
appearance latent factors from the male and the sequence of
geometric latent factors from the female.

As we observe from figure 13 (c), the appearance infor-
mation, such as the face color, texture, and the five senses,
are the same as that of the female, while the geometric
information, such as the face shape and dynamic face ex-
pression, are similar with the that of the female. In figure

13 (d), the appearance information are the same as that of
the male, while the face shape and dynamic face expression
are similar with the that of the female. More specifically,
comparing figure 13 (d) and figure 13 (b), we can observe
that the face shape in figure 13 (d) is obviously thinner than
that of the original male’s face shape as shown in Subfigure
13 (b), which inherits the face shape of the female from
figure 13 (a). Comparing figure 13 (c) and figure 13 (a),
we can observe that although the face shape and dynamic
face expression are changed, the face color, texture, and the
detailed appearance features, such as the eyebrows are kept
the same as the original female’s eyebrows.

Figure 14 also demonstrates the experimental results on
transferring and recombining the appearance and geometric
information from video sequences of another two persons.
From figure 14, we observe similar phenomena as that
from figure 13. The above experimental results verify that
the appearance and geometric information from the video
sequences are well disentangled by the proposed dynamic
deformable generator model.

Next, we further study disentangling of the learned
geometric information from the video into the global shape
and dynamic expression. Thus, we can edit the face shape
of a person, while keeping his dynamic face expression
from the original video. Recall in Eq. (10) in Section 4,
the sequence of geometric latent factors Zgt , {t = 0, . . . , T}
can be represented by the summation, in the latent space,
of the geometric latent factor of the first frame Zg0 and
the consequent hidden state vectors sgt , {t = 1, . . . , T}.
Thus, the geometric latent factor of the first frame can be
employed to represent the global shape, while the conse-
quent hidden state vectors can be utilized to represent the
dynamic expression. We plot the learned appearance basis
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(a) Three original video sequences of the same female. (b) Three original video sequences of the same male

(c) Recombine the appearance from (a) and geometry from (b). (d) Recombine the appearance from (b) and geometry from (a)

Fig. 14. Transfer and recombine the appearance and geometric information from different video sequences. (a) Three original video sequences of
the same female with expressions of anger,disgust and surprise; (b) Three original video sequences of the same male with expressions of disgust,
happiness, and fear. (c) Transfer and recombine the appearance from female in (a), and the geometry from the male in (b), so that the generated
video sequences in (c) inherit the appearance from the female but the shape and expressions (disgust, happiness, and fear) from the male. (d)
Transfer and recombine the appearance from the male in (b), and the geometry from the female in (a), so that the generated video sequences in
(d) inherit the appearance from the male but the shape and expressions (anger,disgust and surprise) from the female.

functions for the first frame in the first two rows of figure
(15), according to the method we did in Section 5.1. By
observing the interpolating results of the appearance latent
factors along the basis functions among [−γ, γ], we find the
major appearance basis functions capture the identity and
color changing of the person, such as identity varying from
male to female (the first row), and the background color
varying from black to blue (the second row). Since the MUG
dataset only contains face expression videos from the front
view, the major geometric basis function captures the shape
information. The third and the fourth rows of figure (15)
demonstrate the major shape basis function by applying it
over the appearance basis functions in the first two rows
when keeping the interpolation value equals to −4γ5 . As we
can observe from the interpolation results of the geometric
latent factors Zg0 along the basis functions among [−γ, γ],
the face shape varies from fat to thin, while the identity
information from the appearance is kept invariant.

To edit the global shape information of the video se-
quence, we can recombine the geometric latent factors
Zg0 with different coefficients corresponding to the shape
basis function, and the consequent hidden state vectors
sgt , {t = 1, . . . , T} to generate a new sequence of geometric
latent factors Zgt , {t = 0, . . . , T}. Figure (16) shows the
results of editing the shape of two face expression videos.
As we can observe from figure (16), the face shapes of the
second row and the fourth row are thinner than that of the
first and the third row, while the facial expressions, as well
as the appearance information, of the second row and the
fourth row are the same as that of the first and the third row.
These results verify that the proposed dynamic deformable
generator model can not only disentangle the appearance
and geometric information of the video sequence, but also

Fig. 15. The first two rows show the typical appearance basis functions
for the first frame, visualized by the generated images from interpolating
the appearance latent factors along the basis functions. Each dimen-
sion of the appearance latent factors encodes appearance information
such as gender and background color. The last two rows demonstrate
the major geometric basis function, visualized by applying it over the
appearance basis functions in the first two rows. The major geometric
basis function captures the shape information. From left to the right, the
shape of the faces at the last two rows change from fat to thin.

further disentangle the global shape and dynamical expres-
sion among the geometric information.

Dynamic Deformable fields for facial expression analy-
sis and recognition

We next demonstrate that the learned dynamic deformable
fields can be used for facial expression analysis and recog-
nition. To visualize the dynamic deformable fields, we plot
the dynamic deformed grids over the corresponding facial
sequences. As we can observe from figure 17, for different
expressions, the dynamic deformed grids are different. The
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Fig. 16. Editing the shape of the whole video sequence of facial expres-
sion. The face shapes of the video sequences in the second and the
fourth row are thinner than that of the first and the third row, while the
facial expressions, as well as the appearance information, of the video
sequences in the second and the fourth row are kept invariant as that of
the first and the third row.

first row of figure 17 demonstrate the anger. As observed
from the deformable lines around the eyes, brows, and
mouth, the implicit movements are inward lowering the
brows and mouth compaction. The second row demonstrate
the disgust. As observed from the deformable lines around
the nose, mouth and brows, the implicit movements are
upward nose motion, mouth expanded and opened, and
lowering of brows. The third row show the fear. As observed
from the deformable lines around the mouth and brows,
the implicit movements are slight expansion and raising
of mouth and raising inner parts of brows. The fourth
row shows the happiness. As observed from the deformed
grids around the mouth, the implicit movement is mouth
opening with its expansion. The fifth row demonstrates the
neutral. As observed from the deformed grids, there are no
movements under this neutral expression. The sixth row
shows the sadness. As observed from the deformable lines
around the mouth, the implicit movement is lowing mouth
corners and raising mid mouth. The last row demonstrate
the surprise. As observed from the grid lines around the
brows and the lip, the implicit movement is raising brows
and raising the upper lip.

Since the facial expression is connected with the dynamic
geometric information and unrelated with the appearance
information, such as color, illumination, and identity, we
can employ both the learned dynamic geometric latent
factors {Zgt , t = 0, · · · , T} and the dynamic deformation
fields {Fg(Zgt ; θg), t = 0, · · · , T} (defined in Eq. 12) as
the feature to recognize the facial expressions. Specifically,
the learned dynamic geometric latent factors (dglf) or the
dynamic deformable fields (ddf) are fed into the long short-
term memory (LSTM) to model the temporal change. More
specifically, we utilize an one-layer LSTM, and the output
of LSTM is connected with a fully connected layer with
30 hidden neurons and a soft-max layer with cross-entropy
loss. To evaluate the performance of our method, we com-
pare our method with MoCoGAN [57], whose motion latent
factors are feed to the same LSTM and the logistic classi-
fier. We also compare our method with 5 state-of-art facial
emotion recognition algorithms: DAGSVM-GT [58], UPSM
[59], HiNet [60], Multi-stream CNN [61], and RADAP [62].
According to the experimental setup in RADAP, UPSM and
HiNet, in our experiments, the 10-fold person independent
cross-validation scheme is employed.

Fig. 17. Dynamic deformed grids for 7 different facial expressions over
the corresponding facial sequences. From the top row to the bottom
row, the facial expressions are anger, disgust, fear, happiness, neutral,
sadness. and surprise. As can be observed from the regions around
the eyes, brows, nose, and mouth, the learned dynamic deformation
fields (demonstrated as deformed grids) reflect the intrinsic feature of
different kinds of facial expressions. See text for detail. Best viewed with
magnification.

In table 3, we measure the performance of facial emotion
recognition in terms of average recognition accuracy. Our
method using dynamic geometric latent factors (dglf) per-
forms better than the MoCoGAN’s motion latent factors as
the feature representation. Moreover, the learned dynamic
deformable fields (ddf) achieves superior recognition accu-
racy compared with the other algorithms. The reasons are as
follows: (1) The disentangled dynamic geometric informa-
tion is more effective for facial expression recognition, since
the appearance information, such as color, illumination, and
identity, are unrelated with the expression or the emotion
and sometimes may result in negative effects. (2) Our model
disentangles the appearance and geometric information by
two generators connected by the warping function. The
geometric warping only modifies the positions of pixels
in an image without changing the color or illumination.
Therefore, the extracted dense deformable fields is more
effective and pure than the motion latent factors learned by
the MoCoGAN, which disentangles the content and motion
latent factor from one concatenated latent vector. (3) The
learned dense deformable fields contain more important
information than the methods based on sparse landmarks
such as UPSM [59] and DAGSVM-GT [58].

5.6 Balancing explaining-away competition and Net-
work Structures
The proposed deformable generator model utilizes two
generator networks to disentangle the appearance and ge-
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TABLE 3
Comparisons of the mean recognition accuracy of seven different methods on the MUG dataset. Dglf and Ddf denote our method employ the

learned dynamic geometric latent factors and the dynamic deformable fields as the feature representation, respectively.

DAGSVM-GT [58] UPSM [59] HiNet [60] Multi-stream CNN [61] RADAP [62] MoCoGAN [57] Our’s Dglf Our’s Ddf
82.3 87.7 87.2 85.4 85.6 83.1 85.5 92.0

TABLE 4
Network architectures of deformable generators for images. The kernel
size of the deconvolution layer is listed in [·] and the number of output

channel is listed in (·). The stride of all the deconvolution layer is 2. The
balance parameter α is set to 0.625

Layer Appearance Generator Network Geometric Generator Network
1 Za ∼ N (0, I64) Zg ∼ N (0, I64)
2 FC, (4× 4× 128× α) FC, (4× 4× 128)
3 Deconv+ReLU, [3× 3], (64× α) Deconv+ReLU, [3× 3], (64)
4 Deconv+ReLU, [3× 3], (32× α) Deconv+ReLU, [3× 3], (32)
5 Deconv+ReLU, [5× 5], (16× α) Deconv+ReLU, [5× 5], (16)
6 Deconv+Tanh, [5× 5], (3) Deconv+Tanh, [5× 5], (2)

ometric information from an image. Since the geometric
generator only produces displacement for each pixel with-
out modifying the pixel’s value, the color and illumination
information and the geometric information are naturally
disentangled by the proposed model’s specific structure.

In order to properly disentangle the identity (or catego-
ry) and the view (or geometry) information, the learning
capacity between the appearance generator and geometric
generator should be balanced. The appearance generator
and the geometric generator cooperate with each other
to generate the images. Meanwhile, they also compete
against each other to explain away the training images.
If the learning of the appearance generator outpaces that
of the geometric generator, the appearance generator will
encode most of the knowledge (including the view and
shape information), while the geometric generator will only
learn minor warping operations. On the other hand, if the
geometric generator learns much faster than the appearance
generator, the geometric generator will encode most of the
knowledge (including the identity or category information),
which should be encoded by the appearance network.

To control the tradeoff between the two generators, we
propose two schemes. In the first scheme, we introduce a
balance parameter α, which is defined as the ratio of the
number of filters within each layer between the appear-
ance and geometric generators. The balance parameter α
should not be too large or too small. In the experiments
of deformable generator for images, we adopt this scheme,
and set α to 0.625 in our experiments. The appearance and
geometric generator’s structures are shown in Table 4.

In the second scheme, we explicitly scale the weight-
s between the two generators with a balance parameter
β at runtime to control the tradeoff. Specifically, we set
ŵai = wai /c and ŵgi = wgi /c × β, where wai and wgi are
the weights for the appearance and geometric generators, c
is the per-layer normalization constant from He’s initializer
[63]. This dynamical updating scheme for scaling the two
set of weights can control the tradeoff between the two
generators more flexible, because, in scheme 1, the number
of filter is an integer, which results in the limited choice

of the balance parameter α, while, in scheme 2, the values
of the weights are decimals which results in the infinite
number of the choice for the balance parameter β. In the
experiments of the dynamic deformable generator for the
video sequences, we adopt the second scheme, and set β to
0.3 in our experiments. The corresponding appearance and
geometric generator’s structures are shown in Table 5.

TABLE 5
Network architectures of dynamic deformable generators for video

sequences. The kernel size of the deconvolution layer is listed in [·] and
the number of output channel is listed in (·). The stride of the

appearance generator network’s first 4 deconvolution layer is 2, for the
last deconvolution layer is 1 . The stride of the geometric generator

network’s first 2 deconvolution layer is 4, for the last deconvolution layer
is 1. The balance parameter β is set to 0.3

Layer Appearance Generator Network Geometric Generator Network
1 Za

0 ∼ N (0, I60), s
a
0 = 0 Zg

0 ∼ N (0, I30), s
g
0 = 0

2 FC+ReLU, (4× 4× 512) FC+ReLU, (4× 4× 256)
3 Deconv+ReLU, [3× 3], (512) Deconv+ReLU, [4× 4], (128)
4 Deconv+ReLU, [3× 3], (256) Deconv+ReLU, [4× 4], (64)
5 Deconv+ReLU, [3× 3], (128) Deconv+Tanh, [5× 5], (2)
6 Deconv+ReLU, [3× 3], (64)
7 Deconv+Tanh, [5× 5], (3)

Layer Appearance Transition Network Geometric Transition Network
1 ξat ∼ N (0, I3), s

a
0 = 0 ξgt ∼ N (0, I10), s

g
0 = 0

2 FC+ReLU, (20) FC+ReLU, (20)
3 FC+ReLU, (20) FC+ReLU, (20)
4 FC+tanh, (60) FC+tanh, (30)

6 CONCLUSION AND FUTURE WORK

In this study, we propose a deformable generator model
which aims to disentangle the appearance and geometric
information of an image into two independent latent vectors
Za and Zg . We also introduce a dynamic deformable gen-
erator model for the spatial-temporal process which disen-
tangle the appearance and geometric information of a video
sequence into two groups of independent latent vectors Zat
and Zgt . The learned geometric generator can be transferred
to other datasets, or can be used for the purpose of data
augmentation to produce more variations in the training
data for better generalization. The geometric generator can
also be generalized to incorporate 3D information of rigid
or non-rigid 3D objects.

In addition to the learning and inference algorithm
adopted in this paper, the model can also be trained by VAE
and GAN, as well as their generalizations such as β-VAE
and info-GAN, which target at disentanglement in general.

In our work, we mainly focus on disentangling the over-
all appearance and geometric information into two (groups
of) independent vectors. We may further introduce other
regularization terms, such as the mutual information or
the total correlation, into the existing training objective to
enforce and encourage the latent factors within the appear-
ance group or geometry group to be more interpretable and
independent.
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In our work, the warping function based on coordinate
displacements is hand designed. A refinement is that, be-
sides the warping function, another network representing
the residual information can be learned from the data.
However, we tend to believe that the warping function itself
or more importantly the notion of coordinate displacements
may have to be a fundamentally innate part of a model for
vision that may not be learned from the data.

In the current work, we focus on extracting the appear-
ance and geometric knowledge from the image or video
data. For more general situation, we may further extract the
topology information, and thus we will disentangle the ap-
pearance, geometry and topology information all together.
The topology information may take care of specific structure
information. Specifically, different categories of images usu-
ally take on different structures, so we can employ the one-
hot discrete latent variables to model this kind of topology
(or structure) information. From the perspective of unsuper-
vised clustering, by disentangling the topology information,
we can cluster the data with similar topology information.
We have implement this idea, and our preliminary results
on the MNIST dataset suggest that we can learn meaningful
deformable generator. Specifically, the topological latent fac-
tors can specify the desired categories of digits with similar
structure information, while within each topological class,
the geometric latent factors can control the shape and view
information of the generative images.
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