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A Generalized Earley Parser
for Human Activity Parsing and Prediction

Siyuan Qi, Baoxiong Jia, Siyuan Huang, Ping Wei, and Song-Chun Zhu

Abstract—Detection, parsing, and future predictions on sequence data (e.g., videos) require the algorithms to capture non-Markovian
and compositional properties of high-level semantics. Context-free grammars are natural choices to capture such properties, but
traditional grammar parsers (e.g., Earley parser) only take symbolic sentences as inputs. In this paper, we generalize the Earley parser
to parse sequence data which is neither segmented nor labeled. Given the output of an arbitrary probabilistic classifier, this generalized
Earley parser finds the optimal segmentation and labels in the language defined by the input grammar. Based on the parsing results, it
makes top-down future predictions. The proposed method is generic, principled, and wide applicable. Experiment results clearly show
the benefit of our method for both human activity parsing and prediction on three video datasets.

Index Terms—video understanding, high-level vision, activity recognition, activity prediction, grammar models, grammar parser
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1 INTRODUCTION

W E propose an algorithm to tackle the task of under-
standing complex human activities from (partially-

observed) videos from two important aspects: activity
recognition and prediction. This is a ubiquitous problem
driven by a wide range of applications in many perceptual
tasks. Some scenarios further require the algorithm to have
both recognition and prediction capabilities, e.g., assistive
robots would need to recognize the current human activity
and provide future-aware assistance.

To find a joint solution of activity recognition and predic-
tion, we need to consider two questions: 1) what is a good
representation for the structure of human activities/tasks,
and 2) what is a good inference algorithm to cope with such
a representation. A popular family of representations for
events is the Markov models (e.g., hidden Markov Model).
However, Markov models are not expressive enough since
human tasks often exhibit non-Markovian and composi-
tional properties. Hence we argue that 1) a representation
should reflect the hierarchical/compositional task structure
of long-term human activities, and 2) an inference algorithm
should recover the hierarchical structure given the past
observations, and be able to predict the future.

We refer to the Chomsky hierarchy to choose a model to
capture the hierarchical structure of the entire history. The
Chomsky hierarchy is a containment hierarchy of classes
of formal grammars in the formal languages of computer
science and linguistics. The reason is that activities are
analogous to languages: actions are like words and activi-
ties are like languages. The Chomsky hierarchy categorizes
language models into four levels: 1) Turing machines, 2)
context-sensitive grammars, 3) context-free grammars, and
4) regular grammars. Higher-level models contain lower-
level models, and Markov models belongs to the lowest
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Fig. 1: The generalized Earley parser segments and labels
the sequence data into a label sentence in the language of
a given grammar. The input of the parser is a matrix of
probabilities of each label for each frame, given by an arbi-
trary classifier. Based on the classifier output, we compute
prefix probabilities for different label prefices. The parsing
process is achieved by expanding a grammar prefix tree and
searching heuristically in this tree according to the prefix
probabilities. Future predictions can also be made based on
the grammar prefix tree. In the figure, thicker edges indicate
higher probabilities and e denotes the end of a sentence.

level (regular grammars). In this paper, we propose to use
context-free grammars to parse and predict human activities.
In the definition of formal language theory, a grammar is a
set of production rules for sentences in a formal language.
In our case, the rules describe how to form sentences (activ-
ities) from the language’s alphabet (actions) that are valid.

However, it has not been possible to directly use sym-
bolic grammars to parse and label sequence data (e.g.,
videos). Traditional grammar parsers take symbolic sen-
tences as inputs instead of noisy sequence data. The data has
to be i) segmented and ii) labeled to be parsed by existing
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grammar parsers. One naive solution is to first segment
and label the data using a detector and thus generating
a label sentence. Then grammar parsers can be applied
on top of it for parsing prediction. But this is apparently
non-optimal, since the grammar rules are not considered
in the detection/classification process. It may not even be
possible to parse this label sentence, because the output
from detectors are very often grammatically incorrect.

In this paper, we design a grammar-based parsing algo-
rithm that directly operates on input sequence data, which
goes beyond the scope of symbolic string inputs for classic
parsing algorithms. Specifically, we propose a generalized
Earley parser to take probabilistic sequence inputs instead of
deterministic symbolic inputs, based on the classic Earley
parser [1]. The algorithm finds the optimal segmentation
and label sentence according to both a symbolic grammar
and a classifier output of probabilities of labels for each
frame as shown in Figure 1. Optimality here means maxi-
mizing the joint probability of the label sentence according
to the grammar prior and classifier output while being
grammatically correct.

The difficulty of achieving this optimality lies in the
joint optimization of both the grammatical structure and
the parsing likelihood of the output label sentence. For ex-
ample, an expectation-maximization-type of algorithm will
not work well since i) there is no guarantee for optimality,
and ii) any grammatically incorrect sentence has a grammar
prior of probability 0. The algorithm can easily get stuck in
local minimums and fail to find the optimal solution that is
grammatically correct.

The core idea of our algorithm is to directly and effi-
ciently search for the optimal label sentence in the language
defined by the grammar. The constraint of the search space
ensures that the sentence is grammatically correct. Specif-
ically, a heuristic search is performed on the prefix tree
expanded according to the grammar, where the path from
the root to a node represents a partial sentence (prefix).
We search through the prefices to find the best sentence
according to a heuristic. By carefully defining the heuristic
as a prefix probability computed based on the grammar
prior and classifier output, we can efficiently search through
the tree to find the optimal label sentence.

The generalized Earley parser has four major advan-
tages. i) The inference process highly integrates a high-level
grammar with an underlying classifier; the grammar gives
guidance for segmenting and labeling the sequence data and
future predictions. ii) The only requirement for the under-
lying classifier is that the classifier should give probabilisitc
outputs. This makes the algorithm widely applicable, since
almost all statistical learning classifiers are probabilistic. iii)
It generates semantically meaningful results (a grammar
parse tree) for data sequence, and the process is highly
explainable. iv) It is principled and generic, as it applies
to most sequence data parsing and prediction problems (the
data does not have to be videos).

We evaluate the proposed approach on three datasets of
human activities in the computer vision domain. The first
dataset CAD-120 [2] consists of daily activities and most
activity prediction methods are based on this dataset. Com-
parisons show that our method significantly outperforms
state-of-the-art methods on future activity prediction. The

second dataset Watch-n-Patch [3] is designed for “action
patching”, which includes daily activities that have action
forgotten by people. Experiments on the second dataset
show the robustness of our method on noisy data. The
third dataset Breakfast [4] consists long videos of daily
cooking activities. Results on this dataset show compar-
isons between our method and other structured modeling
and language-inspired modeling methods. All experiments
show that the generalized Earley parser performs well on
both activity parsing and prediction tasks.

This paper makes three major contributions.
• It designs a parsing algorithm for symbolic context-

free grammars that directly operates on sequence data. It
can obtain the optimal segmentation and labels according
to the grammar prior and classifier outputs.
• It proposes a prediction algorithm that naturally inte-

grates with this parsing algorithm.
• It formulates an objective for future prediction for both

grammar induction and classifier training. The generalized
Earley parser serves as a concrete example for combining
symbolic reasoning methods and connectionist approaches.

2 RELATED WORK

This paper is an extension of previous ICCV and ICML
papers [5, 6]. The extension includes two major aspects:
1) for the method, we have extended the algorithm to
incorporate a non-trivial grammar prior into the generalized
Earley parser, and 2) in the experiments, we tested the
model on more datasets with more comparisons and in-
depth analyses.

Activity parsing refers to recognition and segmenta-
tion of long-term and complicated activities from videos,
whereas action recognition corresponds to short-term ac-
tions. They are two extensively-studied topics in computer
vision and we refer the readers to a survey [7] for a more
comprehensive treatment. The main stream of work on
activity recognition is to extend mid-level representations
to high-level representations.

These extensions are designed in several different ways
to model the complex activity structures. A number of meth-
ods have been proposed to model the high-level temporal
structure of low-level features extracted from video [8, 9, 10,
11, 12, 13]. Some other approaches represent complex activ-
ities as collections of attributes [14, 15, 16, 17]. Another im-
portant type of methods builds compositional/hierarchical
models on actions [15, 18, 19, 20, 21, 22, 23]. Koppula
et al. [2] proposed a model incorporating object affordances
that detects and predicts human activities. Wei et al. [24]
proposed a 4D human-object interaction model for event
recognition. In some recent works, structural models are
implicitly learned by neural networks [25, 26, 27, 28, 29].

Grammar models fall into the category of compositional
models for temporal structures. Ivanov and Bobick [30]
proposed to first generate a discrete symbol stream from
continuous low-level detectors, and then applied stochastic
context-free parsing to incorporate prior knowledge of the
temporal structure. Pei et al. [31] detected atomic actions
and used a stochastic context sensitive grammar for video
parsing and intent prediction. Similar to the generalized
Earley parser, it parses the video in an online fashion and
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enables prediction. However, the algorithm uses manu-
ally defined thresholds to detect action transitions. Kuehne
et al. [4] modeled action units by hiddem Markov models
(HMMs), and models the higher-level action sequence by
context-free grammars. Pirsiavash and Ramanan [32] pro-
posed segmental grammar for video parsing, which extends
regular grammars to allow non-terminals to generate a
segment of termianls of certain lenghts. Vo and Bobick
[33] generated a Bayes network, termed Sequential Interval
Network (SIN), where the variable nodes correspond to the
start and end times of component actions. This network
then makes inference about start and end times for de-
tected action primitives. Qi et al. [5] proposed to integrate
spatial-temporal attributes to terminal nodes of a context-
free grammar. Based on Earley parser, an activity parsing
and prediction algorithm is proposed. Overall, grammar-
based methods have shown effectiveness on tasks that have
compositional structures.

However, the above grammar-based algorithms (except
[32]) take symbolic inputs like the traditional language
parsers. They require the action primitives/atomic actions
to be first detected, then a grammar is used for high-level
parsing. This limits the applicability of these algorithms.
Additionally, the parser does not provide guidance for
either training the classifiers or segmenting the sequences.
They also lack a good approach to handle grammatically
incorrect label sentences. For example, Qi et al. [5] found
in the training corpus the closest sentence to the recog-
nized sentence and applies the language parser afterward.
Pirsiavash and Ramanan [32] ensures the results are gram-
matically correct, but it makes the grammar unnecessarily
redundant (each possible segment length will make a new
copy for each original grammar rule).

In our case, the proposed parsing algorithm takes se-
quence data of raw signals and a typical context-free gram-
mar as input. It then generates the label sentence as well
as the parse tree. All parsed label sentences are grammat-
ically correct, and a learning objective is formulated for
the classifier. Our work also serves as a bridge between
connectionist and symbolic approaches, and it does not have
any constraint on the low-level classifier.

Future activity prediction is a relatively new domain
in computer vision. [6, 23, 24, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47] predict human trajectories/actions in
various settings including complex indoor/outdoor scenes
and crowded spaces. Li and Fu [43] built a probabilistic
suffix tree to model the Markov dependencies between
action units and thus predict future events using a com-
positional model. Walker et al. [41] predicted not only the
future motions in the scene but also the visual appearances.
In some recent work, Koppula and Saxena [48] used an
anticipatory temporal conditional random field to model the
spatial-temporal relations through object affordances. Jain
et al. [49] proposed structural-RNN as a generic method to
combine high-level spatial-temporal graphs and recurrent
neural networks, which is a typical example that takes
advantage of both graphical models and deep learning. Qi
et al. [5] proposed a spatial-temporal And-Or graph (ST-
AOG) for activity prediction. In this work, we present the
generalized Earley parser, in which the recognition and
prediction are naturally and tightly integrated.
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Fig. 2: An example of a temporal grammar representing the
activity “making cereal”. The green and yellow nodes are
And-nodes (i.e., production rules that represents combina-
tions) and Or-nodes (i.e., productions rules that represents
alternatives), respectively. The numbers on branching edges
of Or-nodes represent the branching probability. The circled
numbers on edges indicate the temporal order of expansion.

3 REPRESENTATION: PROBABILISTIC CONTEXT-
FREE GRAMMARS

We model complex activities by grammars, where low-level
actions are terminal symbols, i.e., like words in a language.
In formal language theory, a context-free grammar (CFG) is a
type of formal grammar, which contains a set of production
rules that describe all possible sentences in a given formal
language. In Chomsky Normal Form, a context-free gram-
mar G is defined by a 4-tuple G = (V,Σ, R,Γ) where
• V is a finite set of non-terminal symbols that can be

replaced by/expanded to a sequence of symbols.
• Σ is a finite set of terminal symbols that represent actual

words in a language, which cannot be further expanded.
• R is a finite set of production rules describing the replace-

ment of symbols, typically of the form A→ BC or A→ α
for A,B,C ∈ V and α ∈ Σ. A production rule replaces
the left-hand side non-terminal symbol by the right-hand
side expression. For example, A → BC|α means that A
can be replaced by either BC or α.

• Γ ∈ V is the start symbol (root of the grammar).
Probabilistic Context-Free Grammars (PCFGs) augments

CFGs by associating each production rule with a probability.
Formally, it is defined by a 5-tuple G = (V,Σ, R,Γ), where
P is the set of probabilities on production rules. Figure 2
shows an example probabilistic temporal grammar of the
activity “making cereal”.

Given a formal grammar, parsing is the process of an-
alyzing a string of symbols, conforming to the production
rules and generating a parse tree. A parse tree represents
the syntactic structure of a string according to some context-
free grammar. The root node of the tree is the grammar
root. Other non-leaf nodes correspond to non-terminals in
the grammar, expanded according to grammar production
rules (could be expanding a combination or choosing al-
ternatives). The leaf nodes are terminal symbols. All the
leaf nodes together form a sentence in the language space
described by the grammar.
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Fig. 3: An example illustrating the symbolic parsing and prediction process based on the Earley parser and detected actions.
In the first two figures, the red edges and blue edges indicates two different parse graphs for the past observations. The
purple edges indicate the overlap of the two possible explanations. The red parse graph is eliminated from the third figure.
For the terminal nodes, yellow indicates the current observation and green indicates the next possible state(s).

4 EARLEY PARSER

In this section, we briefly review the original Earley
parser [1], a classic grammar parsing algorithm with useful
concepts that will be extended in the generalized Earley
parser. An illustrative example is shown in Figure 4 to run
through the algorithm. We then discuss how the original
Earley parser can be applied to event parsing and its draw-
backs.

Earley parser is an algorithm for parsing sentences of a
given context-free language. In the following descriptions,
α, β, and γ represent any string of terminals/nonterminals
(including the empty string ε), A and B represent single
nonterminals, and a represents a terminal symbol. We adopt
Earley’s dot notation: for production rule of form A → αβ,
the notation A → α · β means α has been parsed and β is
expected.

Input position n is defined as the position after accepting
the nth token, and input position 0 is the position prior to
input. At each input position m, the parser generates a state
set S(m). Each state is a tuple (A→ α · β, i), consisting of
• The production currently being matched (A→ αβ).
• The dot: the current position in that production.
• The position i in the input at which the matching of this

production began: the position of origin.
Seeded with S(0) containing only the top-level rule, the

parser then repeatedly executes three operations: prediction,
scanning and completion:
• Prediction: for every state in S(m) of the form (A → α ·
Bβ, i), where i is the origin position as above, add (B →
·γ,m) to S(m) for every production in the grammar with
B on the left-hand side (i.e., B → γ).

• Scanning: if a is the next symbol in the input stream, for
every state in S(m) of the form (A→ α ·aβ, i), add (A→
αa · β, i) to S(m+ 1).

• Completion: for every state in S(m) of the form (A →
γ·, j), find states in S(j) of the form (B → α · Aβ, i) and
add (B → αA · β, i) to S(m).

In this process, duplicate states are not added to the state
set. These three operations are repeated until no new states
can be added to the set. The Earley parser executes in O(n2)
for unambiguous grammars regarding the string length n,
and O(n) for almost all LR(k) grammars.

Γ→ R 1.0 N → “0” 0.3

R→ N 0.4 N → “1” 0.7

R→ N“ + ”N 0.6

(a) The input grammar. It contains a root symbol Γ, two non-
terminal symbols R and N , three terminal symbols 0, 1 and
+. The number to the right of each production rule is the
corresponding probability.

state rule comment
S(0)
(0) Γ→ ·R start rule
(1) R→ ·N predict: (0)
(2) R→ ·N +N predict: (0)
(3) N → ·0 predict: (1), (2)
(4) N → ·1 predict: (1), (2)
S(1)
(0) N → 0· scan: S(0)(3)
(1) R→ N · complete: (0) and S(0)(1)
(2) R→ N ·+N complete: (0) and S(0)(2)
(3) Γ→ R· complete: (1) and S(0)(0)
S(2)
(0) R→ N + ·N scan: S(1)(2)
(1) N → ·0 predict: (0)
(2) N → ·1 predict: (0)
S(3)
(0) N → 1· scan: S(2)(2)
(1) R→ N +N · complete: (0) and S(2)(0)
(2) Γ→ R· complete: (1) and S(0)(0)

(b) A run-through for input string “0 + 1”.

Fig. 4: An illustrative example of the original Earley parser.

The original Earley parser inspires a way to do event
parsing and prediction from videos [5]. The video can be
first processed by a classifier to be segmented and labeled by
actions, thus generating a label sentence. We can apply the
Earley parser to parse the sentence to get a partial parse tree.
The tree can be partial, since the sentence representing the
activity might not be complete. Then action prediction can
naturally be accomplished by looking that the open Earley
states generated by the “prediction” operation. An example
is shown in Figure 3.
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However, this process can be problematic. Since the
Earley parser takes symbols as input, it has little guid-
ance to help the segmentation process that happens in
the frame level. A more severe problem is that the seg-
mentation and labeling process often generates sentences
that are grammatically incorrect, i.e., not in the language
space described by the grammar. Thus the sentence cannot
be parsed by the parser. In such cases, extra efforts are
needed to modify the label sentence. One way to address
that is sampling sentences from the language and find the
closest alternatives [5]. There also exist work in computa-
tional linguistics [50, 51, 52] that address the problem of
parsing grammatically incorrect sentences. However, these
methods still operates in the symbolic space and does not
provide much guidance for frame-level inference. To solve
these problems, we propose the generalized Earley parser
(detailed in Section 5) that directly takes sequence data as
input and generates symbolic parse trees and predictions.

5 GENERALIZED EARLEY PARSER

In this section, we introduce the proposed generalized Ear-
ley parser. Instead of taking symbolic sentences as input,
we aim to design an algorithm that can parse raw sequence
data x of length T (e.g., videos or audios) into a sentence
l of labels (e.g., actions or words) of length |l| ≤ T , where
each label k ∈ {0, 1, · · · ,K} corresponds to a segment of a
sequence.

To achieve that, a classifier (e.g., a neural network) is first
applied to each sequence x to get a T×K probability matrix
y (e.g., softmax activations of the neural network), with ykt
representing the probability of frame t being labeled as k.
The proposed generalized Earley parser takes y as input and
outputs the sentence l∗ that best explains the data according
to a grammar G of Chomsky normal form.

Now we discuss how we generalize the Earley parser
to run on the output of a classifier, i.e., the probability
matrix. The core idea is to use the original Earley parser
to help construct a prefix tree according to the grammar.
The best solution is found be performing a heuristic search
in this tree, where the heuristic is computed based on the
probability matrix given by the classifier.

Figure 5 and Figure 6c shows example prefix trees for
the grammar in Figure 4. A prefix tree is composed of three
types of nodes. 1) The root node of the “empty” symbol
ε represents the start of a sentence. 2) The non-leaf nodes
(except the root node) correspond to terminal symbols in
the grammar. A path from the root node to any non-leaf
node represents a partial sentence (prefix). 3) The leaf nodes
e are terminations that represent ends of sentences.

To find the best label sentence for a probability matrix,
we perform a heuristic search in the prefix expanded ac-
cording to the grammar: each node in the tree is associated
with a probability, and the probabilities prioritize the nodes
to be expanded in the prefix tree. The parser finds the best
solution when it expands a termination node in the tree. It
then returns the current prefix string as the best solution.

We compute two different heuristic probabilities for non-
leaf nodes and leaf nodes. For non-leaf nodes, the heuristic
is a prefix probability p(l···|x0:T ): the probability that the
current path is the prefix for the label sentence. In other

words, it measures the probability that ∃t ∈ [0, T ], the
current path l is the label for frame x0:t. For leaf nodes e, the
heuristic p(l|x0:T ) is a parsing probability: the probability
that the current path l is the label sentence for x0:T . The
computation for p(l|x0:T ) and p(l···|x0:T ) are based on the
input probability matrix y. The formulation is derived in
details in Section 5.2.

This heuristic search generalizes the Earley parser to
parse the probability matrix. Specifically, the scan operation
in the Earley parser essentially expands a new node in the
grammar prefix tree. We organize the states into state sets
by the partial sentence (prefix) each state represents. Instead
of matching the sentence to the symbolic input, we now
process state sets according to their prefix probabilities.

5.1 Parsing Operations

We now describe the details of the parsing operations. Each
scan operation will create a new state set S(m,n) ∈ S(m),
where m is the length of the scanned string, n is the total
number of the terminals that have been scanned at position
m. This can be thought of as creating a new node in the
prefix tree, and S(m) is the set of all created nodes at level
m. A priority queue q is kept for state sets for prefix search.
Scan operations will push the newly created set into the
queue with priority p(l···), where l is the parsed string of the
state being scanned. For brevity, we use p(l···) as a shorthand
for p(l···|x0:t) when describing the algorithm.

Each state is a tuple (A→ α · β, i, j, l, p(l···)) augmented
from the original Earley parser by adding j, l, p(l···). Here l
is the parsed string of the state, and i, j are the indices of the
set that this rule originated. The parser then repeatedly exe-
cutes three operations: prediction, scanning, and completion
modified from Earley parser:

• Prediction: for every state in S(m,n) of the form (A→ α·
Bβ, i, j, l, p(l···)), add (B → ·Γ,m, n, l, p(l···)) to S(m,n)
for every production in the grammar with B on the left-
hand side.

• Scanning: for every state in S(m,n) of the form (A →
α · aβ, i, j, l, p(l···)), append the new terminal a to l and
compute the probability p((l + a)···). Create a new set
S(m + 1, n′) where n′ is the current size of S(m + 1).
Add (A→ αa · β, i, j, l + a, p((l + a)···)) to S(m+ 1, n′).
Push S(m+ 1, n′) into q with priority p((l + a)···).

• Completion: for every state in S(m,n) of the form (A →
Γ·, i, j, l, p(l···)), find states in S(i, j) of the form (B →
α ·Aβ, i′, j′, l′, p(l′···)) and add (B → αA·β, i′, j′, l, p(l···))
to S(m,n).

This parsing process is efficient since we do not need to
search through the entire tree. As shown in Figure 6 and
Algorithm 1, the best label sentence l is returned when the
probability of termination is larger than any other prefix
probabilities. As long as the parsing and prefix probabilities
are computed correctly, it is guaranteed to return the best
solution.

The original Earley parser is a special case of the gen-
eralized Earley parser. Intuitively, for any input sentence to
Earley parser, we can always convert it to one-hot vectors
and apply the proposed algorithm. On the other hand,
the original Earley parser cannot be applied to segmented
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TABLE 1: Summary of notations used for parsing & prefix
probability formulation.

x0:t input frames from time 0 to t
l a label sentence
k the last label in l
l− the label sentence obtained by removing the

last label k from the label sentence l
ykt the probability for frame t to be labelled as k
p(l|x0:t) parsing probability of l for x0:t

p(l···|x0:t) prefix probability of l for x0:t

one-hot vectors since the labels are often grammatically
incorrect. Hence we have the following proposition.

Proposition 1. Earley parser is a special case of the generalized
Earley parser.

Proof. Let L(G) denote the language of grammar G, h(·) de-
note a one-to-one mapping from a label to a one-hot vector.
L(G) is the input space for Earley parser. ∀ l ∈ L(G), the
generalized Earley parser accepts h(l) as input. Therefore
the proposition follows.

Here we emphasize two important distinctions of our
method to traditional probabilistic parsers with prefix prob-
abilities. i) In traditional parsers, the prefix probability is
the probability of a string being a prefix of some strings
generated by a grammar (top-down grammar prior). In our
case, the parser computes the bottom-up data likelihood. We
further extend this to a posterior that integrates these two
in Section 5.3. ii) Traditional parsers only maintain a parse
tree, while our algorithm maintains both a parse tree and a
prefix tree. The introduction of the prefix tree into the parser
enables us to efficiently search in the grammar according to
a desired heuristic.

5.2 Parsing & Prefix Probability Formulation
Table 1 summarizes the notations we use in this section.
The parsing probability p(l|x0:T ) is computed in a dynamic
programming fashion. Let k be the last label in l. For t = 0,
the probability is initialized by:

p(l|x0) =

{
yk0 l contains only k,
0 otherwise.

(1)

Let l− be the label sentence obtained by removing the last
label k from the label sentence l. For t > 0, the last frame t
must be classified as k. The previous frames can be labeled
as either l or l−. Then we have:

p(l|x0:t) = ykt (p(l|x0:t−1) + p(l−|x0:t−1)), (2)

where p(l|x0:t−1) corresponds to the possibility that frame
t − 1 is also labelled as k, and p(l−|x0:t−1) accounts for
the possibility that label k starts from frame t. It is worth
mentioning that when ykt is wrongly given as 0, the dynamic
programming process will have trouble correcting the mis-
take. Even if p(l−|x0:t−1) is high, the probability p(l|x0:t)
will be 0. Fortunately, since the softmax function is usually
adopted to compute y, ykt will not be 0 and the solution will
be kept for further consideration.

Then we compute the prefix probability p(l···|x0:T ) based
on p(l−|x0:t). For l to be the prefix, the transition from l−

e

1.0

0.3 0.7 0.0

0.18 0.12

0.054 0.126 0.0

0.126

e

e

e

e0.42 0.28

e 0.054

0.126 0.294 0.0

0.294

e

ee 0.126

Fig. 5: Grammar prefix probabilities computed according
to the grammar in Figure 4. The numbers next to the tree
nodes are prefix probabilities according to the grammar.
The transition probabilities can be easily computed from this
tree, e.g., p(“1”|“1+”, G) = p(“1+1”···|G)/p(“1+”···|G) =
0.294/0.42 = 0.7.

to l can happen at any frame t ∈ {0, · · · , T}. Once the label
k is observed (the transition happens), l becomes the prefix
and the rest frames can be labeled arbitrarily. Hence the
probability of l being the prefix is:

p(l···|x0:T ) = p(l|x0) +

T∑
t=1

ykt p(l
−|x0:t−1). (3)

In practice, the probability p(l|x0:t) decreases exponen-
tially as t increases and will soon lead to numeric underflow.
To avoid this, the probabilities need to be computed in log
space:

logp(l|x0:t)) = log(ykt ) + d+

log(exp(log p(l|x0:t−1)− d) + exp(log p(l−|x0:t−1)− d)),
(4)

where d is a constant number and is usually set to
be max(log(ykt ), log p(l|x0:t−1), log p(l−|x0:t−1)). The time
complexity of computing the probabilities is O(T ) for each
sentence l because p(l−|x0:t) are cached. The worst case
complexity of the entire parsing is O(T |G|).

5.3 Incorporating Grammar Prior
For PCFGs, we can integrate the grammar prior of the
sentence l into the above formulation to obtain a posterior
parsing probability. The basic idea is that we can compute a
“transition probability” of appending a new symbol to the
current sentence. This probability will be multiplied to the
parsing probability when we append a new symbol.

To compute a transition probability p(k|l−, G), we can
first compute the prefix probabilities p(l−···|G) and p(l···|G)
according to the grammar. Then the transition probability is
given by:

p(k|l−, G) =
p(l···|G)

p(l−···|G)
. (5)

An example is shown in Figure 5 for a better intuition.
The computation of this grammar prefix probability will be
detailed in Section 5.3.1. There are two important remarks to
make here. 1) This prior prefix probability is different from
the prefix probability based on the likelihood. The prior is
the probability that a string is the prefix of a sentence in the
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language defined by the grammar, without seeing any data;
the likelihood is the probability that a string is the prefix of a
video’s label. 2) This grammar-based transition probability
is non-Markovian, since the new symbol is conditioned on
the entire history string that has a variable length.

Now, incorporating the grammar transition probability,
for t = 0, the probability is initialized by:

p(l|x0, G) ∝

{
p(k|ε,G) yk0 l contains only k,
0 otherwise,

(6)

where p(k|ε,G) is the probability of appending k to the
empty string ε, which is equivalent to p(k···|G) or p(l···|G).
Notice that the equal sign is replaced by ∝ since the right
hand side should be normalized by the prior p(x0) to get
the correct posterior.

Whenever we append a new symbol to our sentence, we
multiply the probability by the transition probability. Hence
for t > 0 we have:

p(l|x0:t, G) ∝ ykt (p(l|x0:t−1, G) + p(k|l−, G)p(l−|x0:t−1, G)).
(7)

Comparing to Eq. 2, we multiply the second term by
p(k|l−, G) to account for the transition to symbol k.

Finally the posterior probability of l being the prefix of
the label sentence for data x is:

p(l···|x0:T , G) = p(l|x0, G) +

T∑
t=1

p(k|l−, G)ykt p(l
−|x0:t−1, G).

(8)

5.3.1 Grammar Prefix Probability

The derivation of the grammar prefix probability with Ear-
ley parser [53] can be achieved by augmenting the Earley
states with two additional variables: forward probability µ
and inner probability ν. For a state S, the forward probabil-
ity µ is the probability of all parses that lead to S, the inner
probability ν is the probability of all parses expanded from
S. In other words, µ is the probability of the prefix before
S, and ν is the probability of the partial string parsed by S.
Assuming that the grammar is not left-recursive, these two
terms can be computed effiently during the Earley parsing
process:
• Prediction. For (A → α · Bβ, i, [µ, ν]) ⇒ (B →
·γ,m, [µ′, ν′]), the new probabilities are given by

µ′+ = α · P (B → γ), ν′ = P (B → γ).

• Scanning. For (A → α · aβ, i, [µ, ν]) ⇒ (A → αa ·
β, i, [µ′, ν′]), we have

µ′ = µ, ν′ = ν.

• Completion. For (A → γ·, j, [µ′′, ν′′]) and (B → α ·
Aβ, i, [µ, ν])⇒ (B → αA · β, i, [µ′, ν′]), we have

µ′+ = µ · ν′′, ν′ = ν · ν′′.

Finally, the prefix probability of a string is given by the
sum of forward probabilities over all scanned states. A
run-through example of the generalized Earley parser with
grammar prior is shown in Figure 6 abd Figure 7.

Algorithm 1: Generalized Earley Parser
Input : Grammar G, probability matrix y
Output: Best label string l∗

/* For brevity, we denote p(·;x0:t) as p(·)
*/

/* Initialization */
1 S(0, 0) = {(Γ→ ·R, 0, 0, ε, 1.0)}
2 q = priorityQueue()
3 q.push(1.0, (0, 0, ε, S(0, 0)))
4 while (m,n, l−, currentSet) = q.pop() do
5 for s = (r, i, j, l, p(l···)) ∈ currentSet do
6 if p(l) > p(l∗): l∗ = l then l∗ = l
7 if r is (A→ α ·Bβ) then // predict
8 for each (B → Γ) in G do
9 r′ = (B → ·Γ)

10 s′ = (r′,m, n, l, p(l···))
11 S(m,n).add(s′)
12 end
13 end
14 else if r is (A→ α · aβ) then // scan
15 r′ = (A→ αa · β)
16 m′ = m+ 1, n′ = |S(m+ 1)|
17 s′ = (r′, i, j, l + a, p((l + a)···))
18 S(m′, n′).add(s′)
19 q.push(p((l + a)···), (m

′, n′, S(m′, n′)))
20 end
21 else if r is (B → Γ·) then // complete
22 for each ((A→ α ·Bβ), i′, j′) in S(i, j) do
23 r′ = (A→ αB · β)
24 s′ = (r′, i′, j′, l, p(l···))
25 S(m,n).add(s′)
26 end
27 end
28 if p(l−) > p(l), ∀ un-expanded l then return l∗

29 end
30 end
31 return l∗

5.4 Segmentation and Labeling

The generalized Earley parser gives us the best grammati-
cally correct label sentence l to explain the sequence data,
which takes all possible segmentations into consideration.
Therefore the probability p(l|x0:T ) is the summation of
probabilities of all possible segmentations. Let p(l|y0:e) be
the probability of the best segmentation based on the clas-
sifier output y for sentence l. We perform a maximization
over different segmentations by dynamic programming to
find the best segmentation:

p(l|y0:e) = max
b<e

p(l−|y0:b)

e∏
t=b

ykt , (9)

where e is the time frame that l ends and b is the time frame
that l− ends. The best segmentation can be obtained by
backtracing the above probability. Similar to the previous
probabilities, this probability needs to be computed in log
space as well. The time complexity of the segmentation and
labeling is O(T 2).
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Γ→ R 1.0
R→ N 0.4
R→ N“ + ”N 0.6
N → “0” 0.3
N → “1” 0.7

frame “0” “1” “+”
0 0.8 0.1 0.1
1 0.8 0.1 0.1
2 0.1 0.1 0.8
3 0.1 0.8 0.1
4 0.1 0.8 0.1

(a) Left: input grammar. Right: input probability ma-
trix.

Frame ε 0 1 0 + 1 + 0 + 0 0 + 1
0 0.000 0.240 0.070 0.000 0.000 0.000 0.000
1 0.000 0.192 0.007 0.014 0.004 0.000 0.000
2 0.000 0.019 7.0e-04 0.104 0.007 4.3e-04 0.001
3 0.000 0.002 5.6e-04 0.012 7.1e-04 0.003 0.059
4 0.000 1.9e-04 4.5e-04 0.001 1.1e-04 6.6e-04 0.054

prefix 1.000 0.240 0.070 0.108 0.008 0.004 0.066

(b) Cached probabilities

e

1.0

0.24 0.07 0.0

0.108 1.9e-4

0.004 0.066 0.001

0.054

e

e

e

e0.008 4.5e-4

e 6.6e-4

(c) Prefix tree

state # rule µ ν prefix comment
S(0, 0) : l = “ε”, p(l|G) = 1.000, p(l|x,G) = 0.000, p(l···|x,G) = 1.000

(0) Γ→ ·R 1.000 1.000 “ε” start rule
(1) R→ ·N 0.400 0.400 “ε” predict: (0)
(2) R→ ·N +N 0.600 0.600 “ε” predict: (0)
(3) N → ·0 0.300 0.300 “ε” predict: (1),(2)
(4) N → ·1 0.700 0.700 “ε” predict: (1),(2)

S(1, 0) : l = “0”, p(l|G) = 0.300, p(l|x,G) = 1.9e− 04, p(l···|x,G) = 0.240
(0) N → 0· 0.300 0.300 “0” scan: S(0, 0)(3)
(1) R→ N · 0.120 0.120 “0” complete: (0) and S(0, 0)(1)
(2) R→ N ·+N 0.180 0.180 “0” complete: (0) and S(0, 0)(2)
(3) Γ→ R· 0.120 0.120 “0” complete: (1) and S(0, 0)(0)

S(1, 1) : l = “1”, p(l|G) = 0.700, p(l|x,G) = 4.5e− 04, p(l···|x,G) = 0.070
(0) N → 1· 0.700 0.700 “1” scan: S(0, 0)(4)
(1) R→ N · 0.280 0.280 “1” complete: (0) and S(0, 0)(1)
(2) R→ N ·+N 0.420 0.420 “1” complete: (0) and S(0, 0)(2)
(3) Γ→ R· 0.280 0.280 “1” complete: (1) and S(0, 0)(0)

S(2, 0) : l = “0 + ”, p(l|G) = 0.180, p(l|x,G) = 0.001, p(l···|x,G) = 0.108
(0) R→ N + ·N 0.180 0.180 “0+” scan: S(1, 0)(2)
(1) N → ·0 0.054 0.300 “0+” predict: (0)
(2) N → ·1 0.126 0.700 “0+” predict: (0)

S(2, 1) : l = “1 + ”, p(l|G) = 0.420, p(l|x,G) = 1.1e− 04, p(l···|x,G) = 0.008
(0) R→ N + ·N 0.420 0.420 “1+” scan: S(1, 1)(2)

S(3, 0) : l = “0 + 0”, p(l|G) = 0.054, p(l|x,G) = 6.6e− 04, p(l···|x,G) = 0.004
(0) N → 0· 0.054 0.300 “0 + 0” scan: S(2, 0)(1)

S(3, 1) : l = “0 + 1”, p(l|G) = 0.126,p(l|x,G) = 0.054, p(l···|x,G) = 0.066
(0) N → 1· 0.126 0.700 “0 + 1” scan: S(2, 0)(2)
(1) R→ N +N · 0.126 0.126 “0 + 1” complete: (0) and S(2, 0)(0)
(2) Γ→ R· 0.126 0.126 “0 + 1” complete: (1) and S(0, 0)(0)

Final output: l∗ = “0 + 1” with probability 0.054

(d) A run-through of the algorithm

Fig. 6: An example of the generalized Earley parser. A classifier is applied to a 5-frame signal and outputs a probability
matrix (a) as the input to our algorithm. The proposed algorithm expands a grammar prefix tree (c), where e represents
termination. It finally outputs the best label “0 + 1” with probability 0.054. The probabilities of children nodes do not sum
to 1 since grammatically incorrect nodes are eliminated from the search. The search process is illustrated in Figure 7.

5.5 Future Label Prediction

We consider two types of future label predictions: 1)
segment-wise prediction that predicts the next segment la-
bel at each time t, and 2) frame-wise prediction that predicts
the labels for the future δt frames.

5.5.1 Segment-wise Prediction

Given the parsing result l, we can make grammar-based top-
down predictions for the next label z to be observed. The
predictions are naturally obtained by the predict operation
in the generalized Earley parser, and it is inherently an
online prediction algorithm.

To predict the next possible symbols at current position
(m,n), we search through the states S(m,n) of the form
(X → α · zβ, i, j, l, p(l···)), where the first symbol z after the
current position is a terminal node. The predictions Σ are
then given by the set of all possible z:

Σ = {z : ∃s ∈ S(m,n), s = (X → α · zβ, i, j, l, p(l···))}.
(10)

The probability of each prediction is then given by the
parsing likelihood of the sentence constructed by appending
the predicted label z to the current sentence l. Assuming that
the best prediction corresponds to the best parsing result,

the goal is to find the best prediction z∗ that maximizes the
following conditional probability as parsing likelihood:

z∗ = argmax
z∈Σ

p(z, l|G). (11)

For a grammatically complete sentence u, the parsing likeli-
hood is simply the Viterbi likelihood [54] given by the prob-
abilistic context-free grammar. For an incomplete sentence l
of length |l|, the parsing likelihood is given by the grammar
prefix probability. Hence they are both the forward proba-
bility computed in Section 5.3.1. We can also integrate top-
down and bottom-up inference for segment-wise prediction.
A classifier can be trained to predict the next segment label,
and it can be combined with the grammar prior probability
for better predictions.

5.5.2 Frame-wise Prediction
Frame-wise future label prediction is rather straightforward
using the generalized Earley parser. We first run activity
detection on the input videos, and we sample the duration
of the current action. Based on the segment-wise prediction,
we can further sample the duration for future segments,
thus obtaining frame-wise future predictions according to
the prediction range.

5.5.3 Maximum Likelihood Estimation for Prediction
We are interested in finding the best grammar and classifier
that give us the most accurate segment-wise predictions
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Fig. 7: An illustration of the parsing process of the example in Figure 6. It performs a heuristic search in the prefix tree
according to the prefix/parsing probability. It iteratively expands the tree and computes the probabilities as it expands the
tree. The search ends when it hits a parsing terminal e. The paths in bold indicate the best candidates at each search step.

based on the generalized Earley parser. Let G be the gram-
mar, f be the classifier, and D be the set of training exam-
ples. The training set consists of pairs of complete or partial
data sequence x and the corresponding label sequence for
all the frames in x. By merging consecutive labels that
are the same, we can obtain partial label sentences l and
predicted labels z. Hence we have D = {(x, l, z)}. The best
grammar G∗ and the best classifier f∗ together minimizes
the prediction loss:

G∗, f∗ = argmin
G,f

Lpred(G, f), (12)

where the prediction loss is given by the negative log
likelihood of the predictions over the entire training set:

Lpred(G, f) = −
∑

(x,l,z)∈D

log(p(z|x))

= −
∑

(x,l,z)∈D

(log(p(z|l, G))︸ ︷︷ ︸
grammar

+ log(p(l|x))︸ ︷︷ ︸
classifier

).

(13)
Given the intermediate variable l, the loss is decomposed
into two parts that correspond to the induced grammar
and the trained classifier, respectively. Let u ∈ {l} be the
complete label sentences in the training set (i.e., the label
sentence for a complete sequence x). The best grammar
maximizes the following probability:∏

(z,l)∈D

p(z|l, G) =
∏

(z,l)∈D

p(z, l|G)

p(l|G)
=

∏
u∈D

p(u|G), (14)

where denominators p(l|G) are canceled by the previous nu-
merator p(z, l−|G), and only the likelihood of the complete
sentences remain. Therefore inducing the best grammar that
gives us the most accurate future prediction is equivalent to
the maximum likelihood estimation (MLE) of the grammar
for complete sentences in the dataset. This finding lets us
to turn the problem (induce the grammar that gives the
best future prediction) into a standard grammar induction
problem, which can be solved by existing algorithms, e.g.,
[55] and [56].

The best classifier minimizes the second term of Eq. 13:

f∗ = argmin
f
−

∑
(x,l,z)∈D

log(p(l|x)

≈ argmin
f
−

∑
(x,y)∈D

∑
k

yk log(ŷk),
(15)

where p(l|x) can be maximized by the CTC loss [57]. In
practice, it can be substituted by the commonly adopted
cross entropy loss for efficiency. Therefore we can directly
apply generalized Earley parser to outputs of general detec-
tors/classifiers for parsing and prediction.

6 HUMAN ACTIVITY PARSING AND PREDICTION

We evaluate our method on the task of human activity
detection and prediction. We present and discuss our ex-
periment results on three datasets, CAD-120 [2], Watch-n-
Patch [3], and Breakfast [4], for comparisons with state-of-
the-art methods and evaluation of the robustness of our
approach. CAD-120 is the dataset that most existing predic-
tion algorithms are evaluated on. It contains videos of daily
activities that are long sequences of sub-activities. Watch-
n-Patch is a daily activity dataset that features forgotten ac-
tions. Breakfast is a dataset that contains long videos of daily
cooking activities. Results show that our method performs
well on both activity detection and activity prediction.

6.1 Grammar Induction
In both experiments, we used a modified version of the
ADIOS (automatic distillation of structure) [55] grammar
induction algorithm to learn the event grammar. The algo-
rithm learns the production rules by generating significant
patterns and equivalent classes. The significant patterns are
selected according to a context-sensitive criterion defined
regarding local flow quantities in the graph: two proba-
bilities are defined over a search path. One is the right-
moving ratio of fan-through (through-going flux of path)
to fan-in (incoming flux of paths). The other one, similarly,
is the left-going ratio of fan-through to fan-in. The criterion
is described in detail in [55].
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(b) Next segment

Fig. 8: Confusion matrices for predictions on CAD-120.

The algorithm starts by loading the corpus of activity
onto a graph whose vertices are sub-activities, augmented
by two special symbols, begin and end. Each event sample
is represented by a separate path over the graph. Then it
generates candidate patterns by traversing a different search
path. At each iteration, it tests the statistical significance of
each subpath to find significant patterns. The algorithm then
finds the equivalent classes that are interchangeable. At the
end of the iteration, the significant pattern is added to the
graph as a new node, replacing the subpaths it subsumes.
We favor shorter patterns in our implementation.

6.2 Experiment on CAD-120 Dataset

Dataset. The CAD-120 dataset [2] is a standard dataset for
human activity prediction. It contains 120 RGB-D videos of
four different subjects performing 10 high-level activities,
where each high-level activity was performed three times
with different objects. It includes a total of 61,585 total video
frames. Each video is a sequence of sub-activities involving
10 different sub-activity labels. The videos vary from subject
to subject regarding the lengths and orders of the sub-
activities as well as the way they executed the task.

Evaluation metrics. We use the following metrics to
evaluate and compare the algorithms. 1) Frame-wise detec-
tion accuracy of sub-activity labels for all frames. 2) Frame-
wise (future 3s) online prediction accuracy. We compute the
frame-wise accuracy of prediction of the sub-activity labels
of the future 3s (using the frame rate of 14Hz as reported
in [2]). The predictions are made online at each frame t, i.e.,
the algorithms only sees frame 0 to t and predicts the labels
of frame t + 1 to t + δt. 3) Segment-wise online prediction
accuracy. At each frame t, the algorithm predicts the sub-
activity label of the next video segment.

We consider the overall micro accuracy (P/R), macro
precision, macro recall and macro F1 score for all evalua-
tion metrics. Micro accuracy is the percentage of correctly
classified labels. Macro precision and recall are the average
of precision and recall respectively for all classes.

Comparative methods. We compare the results for the
following methods:

1) KGS [2]: a Markov random field model where the
nodes represent objects and sub-activities, and the edges
represent the spatial-temporal relationships. Future frames
are predicted based on the transition probabilities given the
inferred label of the last frame.

TABLE 2: Detection results on CAD-120.

Method Micro Macro
P/R Prec. Recall F1-score

KGS [2] 68.2 71.1 62.2 66.4
ATCRF [48] 70.3 74.8 66.2 70.2
ST-AOG + Earley [5] 76.5 77.0 75.2 76.1
Bi-LSTM 76.2 78.5 74.5 74.9
Bi-LSTM + Generalized Earley 79.4 87.4 77.0 79.7

TABLE 3: Future 3s prediction results on CAD-120.

Method Micro Macro
P/R Prec. Recall F1-score

KGS [2] 28.6 – – 11.1
ATCRF [48] 49.6 – – 40.6
ST-AOG + Earley [5] 55.2 56.5 56.6 56.6
LSTM 49.4 40.9 37.3 37.8
LSTM + Generalized Earley 57.1 52.3 54.1 52.3

TABLE 4: Segment prediction results on CAD-120.

Method Micro Macro
P/R Prec. Recall F1-score

ST-AOG + Earley [5] 54.3 61.4 39.2 45.4
LSTM 52.8 52.5 52.8 47.6
LSTM + Generalized Earley 70.6 72.1 70.6 70.1

2) Anticipatory temporal CRF (ATCRF) [48]: one of
the state-of-the-art prediction methods. It is an anticipa-
tory temporal conditional random field that models the
spatial-temporal relations through object affordances. Fu-
ture frames are predicting by sampling a spatial-temporal
graph.

3) ST-AOG [5]: a spatial-temporal And-Or graph (ST-
AOG) that uses a symbolic context-free grammar to model
activity sequences. This sets up a comparison between our
proposed method and methods that use traditional proba-
bilistic parsers. Since traditional parsers operate on symbolic
data, extra efforts need to be done first to extract symbols
from sequence data. In this comparative method, the videos
are first segmented and labeled by classifiers; the predictions
are then made by the original Earley parser.

4) Bidirectional LSTM (Bi-LSTM): a simple frame-wise
detection classifier. It outputs a sub-activity label for every
input frame feature.

5) LSTM: a simple prediction classifier. We do not use
the Bi-LSTM for prediction since the model should not see
the future frames. For the future 3s (frame-wise) prediction,
the LSTM is trained to output the label for frame t + 3s for
an input frame at time t. For future segment prediction, it
outputs the label of the next segment for an input frame.

6) Bi-LSTM/LSTM + generalized Earley parser: the pro-
posed generalized Earley parser applied to the classifier
output for detection and prediction. The predictions for
the next segments are made according to Section 5.5. The
lengths of unobserved segments are sampled from a log-
normal distribution for the future 3s prediction.

Implementation details. We use the same Bi-LSTM as
the base classifier for detection task and LSTM as the base
classifier for prediction tasks on all three datasets. For both
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Fig. 9: Qualitative results on the Breakfast dataset. The top row pictures show the typical frames and labels of the groud-
truth segments. The bottom rows show the ground-truth segmentation, Bi-LSTM, and Bi-LSTM + GEP results. Best viewd
in color.

models, we used a 2 layer LSTM backbone with hidden size
256 and added bidirectional propagation for the Bi-LSTM
model. For training, we use a Adam optimizer with learning
rate 1×10−3 and set weight decay as 0.8 for every 20 epochs.

Feature extraction. All methods in the experiment use
the same publicly available features from KGS [2]. These
features include the human skeleton features and human-
object interaction features for each frame. The human skele-
ton features are location and distance features (relative to
the subjects head location) for all upper-skeleton joints of
a subject. The human-object features are spatial-temporal,
containing the distances between object centroids and skele-
ton joint locations as well as the temporal changes.

Experiment results. We follow the convention in KGS [2]
to train on three subjects and test on a new subject with a 4-
fold validation. The results for the three evaluation metrics
are summarized in Table 2, Table 3 and Table 4, respectively.
Figure 8 shows the confusion matrices for the two prediction
tasks.

Our method outperforms the comparative methods on
all three tasks. Specifically, the generalized Earley parser
on top of a Bi-LSTM performs better than ST-AOG, while
ST-AOG outperforms the Bi-LSTM. More discussions are
highlighted in Section 6.5.

6.3 Experiment on Watch-n-Patch Dataset
Dataset. Watch-n-Patch [3] is an RGB-D dataset that features
forgotten actions. For example, a subject might fetch milk
from a fridge, pour milk, and leave. The typical action
“putting the milk back into the fridge” is forgotten. The
dataset contains 458 videos with a total length of about 230
minutes, in which people forgot actions in 222 videos. Each

TABLE 5: Detection results on Watch-n-Patch.

Method Micro Macro
P/R Prec. Recall F1-score

ST-AOG + Earley [5] 79.3 71.5 73.5 71.9
Bi-LSTM 84.0 79.7 82.2 80.3
Bi-LSTM + Generalized Earley 84.8 80.7 83.4 81.5

TABLE 6: Future 3s prediction results on Watch-n-Patch.

Method Micro Macro
P/R Prec. Recall F1-score

ST-AOG + Earley [5] 48.9 43.1 39.3 39.3
LSTM 43.9 28.3 26.6 24.9
LSTM + Generalized Earley 58.7 50.5 49.9 49.4

TABLE 7: Segment prediction results on Watch-n-Patch.

Method Micro Macro
P/R Prec. Recall F1-score

ST-AOG + Earley [5] 29.4 28.5 18.9 19.9
LSTM 44.6 43.6 44.6 40.4
LSTM + Generalized Earley 49.5 50.1 49.4 45.5

video in the dataset contains 2-7 actions interacted with dif-
ferent objects. 7 subjects are asked to perform daily activities
in 8 offices and 5 kitchens with complex backgrounds. It
consists of 21 types of fully annotated actions (10 in the
office, 11 in the kitchen) interacted with 23 types of objects.

Feature extraction. We extract the same features as
described in [3] for all methods. Similar to the previous
experiment, the features are composed of skeleton features
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TABLE 8: Detection results on Breakfast.

Method Micro Macro
P/R Prec. Recall F1-score

HOGHOF+HTK [4] 28.8 – – –
ED-TCN [59]∗ 43.3 – – –
TCFPN [60] 52.0 – – –
Fisher+HTK [61] 56.3 38.1 – –
Bi-LSTM 45.6 29.2 25.4 25.6
Bi-LSTM + Generalized Earley 59.7 45.8 36.3 38.5
*The results for [59] is obtained from [60].

and human-object interaction features extracted from RGB-
D images. The skeleton features include angles between
connected parts, the change of joint positions and angles
from previous frames. Each frame is segmented into super-
pixels, and foreground masks are detected. We extract fea-
tures from the image segments with more than 50% in
the foreground mask and within a distance to the human
hand joints in both 3D points and 2D pixels. Six kernel
descriptors [58] are extracted from these image segments:
gradient, color, local binary pattern, depth gradient, spin,
surface normals, and KPCA/self-similarity.

Experiment results. We use the same evaluation metrics
as the previous experiment and compare our method to ST-
AOG [5] and Bi-LSTM. We use the train/test split in [3].
The results for the three evaluation metrics are summarized
in Table 5, Table 6 and Table 7, respectively. Our method
slightly improves the detection results over the Bi-LSTM
outputs, and outperforms the other methods on both predic-
tion tasks. In general, the algorithms make better predictions
on CAD-120, since Watch-n-Patch features forgotten actions
and the behaviors are more unpredictable. Figure 11 shows
some qualitative results, and more details are discussed in
Section 6.5.

6.4 Experiment on Breakfast Dataset

Dataset. Breakfast [4] is a dataset of daily cooking activities.
The dataset includes 52 unique participants, each conduct-
ing 10 distinct cooking activities captured in 18 different
kitchens, It has ∼77 hours of video footage containing
different camera views (3 to 5 depending on the location).
For data annotations, 48 different coarse action units are
identified with 11,267 samples (segments) in total including
∼3,600 silence samples.

Comparative methods. Besides Bi-LSTM, we compare
Bi-LSM + Generalized Earley with state-of-art methods for
activity detection on the Breakfast dataset:

1) HOGHOF+HTK [4]: a grammar-based method. The
authors proposed to use the hidden Markov model (HMM)
for modeling individual action units in the sequence recog-
nition problem. These action units then form the building
blocks to model complex human activities as sentences
using an action grammar. A speech recognition engine (the
HTK toolkit [62]) is used for recognition on top of the
extracted HOGHOF features [9].

2) ED-TCN [59]: an end-to-end method. Encoder-
Decoder Temporal Convolutional Network is proposed to
tackle the action classification problem. Under the model’s
setting, predictions at each frame are a function of a fixed-
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Fig. 10: Frame-wise prediction accuracy vs. prediction dura-
tion on the CAD-120 dataset. GEP stands for the generalized
Earley parser.

(a) Correction

(b) Insertion

Fig. 11: Qualitative results of segmentation results on Watch-
and-Patch. In each group of four segmentations, the rows
from the top to the bottom show the results of: 1) ground-
truth, 2) ST-AOG + Earley, 3) Bi-LSTM, and 4) Bi-LSTM +
generalized Earley parser. The results show (a) corrections
and (b) insertions by our algorithm on the initial segment-
wise labels given by the classifier (Bi-LSTM).

length period of time, which is referred to by the authors as
the receptive field.

3) TCFPN [60]: one of the end-to-end state-of-the-art
methods. The Temporal Convolutional Feature Pyramid
retains the the encoder-decoder architecture and adapt the
lateral connection mechanism proposed in Feature Pyramid
networks to the task of action segmentation.

4) Fisher+HTK [61]: one of the grammar-based state-of-
the-art methods. Similar to [4], the action units are modeled
by HMM, and high-level activities are modeled by action
grammars. The main difference is the feature (Fisher ker-
nels [63]) proposed for action recognition.

Experiment results. To eliminate the factors of feature
extraction for fair comparison, we use the pre-computed
feature provided by [61] to train the underlying Bi-LSTM
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Fig. 12: Detection accuracy vs. trained epochs on the Breakfast dataset. From left to right, the videos are sub-sampled by
a sample rate of 1, 2, 5, 10, and 20 frames, respectively. The running time for Bi-LSTM + Generalized Earley on the testing
splits of Breakfast (on average 27,000 frames before sub-sampling) are on average 150, 40, 10, 2, 1, 0.5 (min) on a single
Titan X GPU desktop with an Intel 8700K CPU.

classifier. Figure 9 shows the qualitative results of activity
detection on the Breakfast dataset. The quantitative results
(Table 8) show that a simple Bi-LSTM is far from state-
of-the-art methods (an absolute difference of 10.7%). Our
full algorithm Bi-LSTM + Genearlized Earley improves the
absolute performance by 14.1%, and outperforms the state-
of-the-art by 3.6%. This shows that our explicit grammar
regularization is effective in correcting the mistakes of the
underlying classifier. Although the underlying classifier is
simple, it is able to perform well in the activity detection
task well.

6.5 Discussion

How does the performance change with respect to the
prediction duration? Figure 10 shows how the frame-wise
prediction accuracy changes when the prediction duration
varies on the CAD-120 dataset. In the CAD-120 dataset, the
average duration of a sub-activity is around 3.6 seconds.
Hence a prediction duration of 10 seconds is over two to
three sub-activities. When the prediction duration increases,
the performance of both approaches drop, but we can see
that the generalized Earley parser still improves the perfor-
mance of the underlying classifier.

Can we reduce the running time for the general-
ized Earley parser? When running the generalized Earley
parser for detection, the most time-consuming step is the
segmentation by dynamic programming. As discussed in
Section 5.4, the complexity for segmentation and labeling
is O(T 2) if we run the complete algorithm. One approx-
imate solution is to run the algorithm on a sub-sampled
video. This would reduce the running time quadratically.
The potential effect of sub-sampling is two-fold: 1) certain
information is dropped and could hurt the performance,
whereas 2) given the length of the activities are generally
long, sub-sampling can serve as a weak duration prior that
might improve performance. We study the effect of sub-
sampling the video, and Figure 12 shows the performance
under different sample rates for both the Bi-LSTM and Bi-
LSTM + generalized Earley parser.

As we can see from Figure 12, our proposed model
outperforms Bi-LSTM models under all sample rates. The
results show a slight increase for both models when the
sample rate increase. We argue that this matches with the
second hypothesis where the added sub-sampling proce-
dure can be seen as adding basic duration constraints. We
also conjecture that the sub-sampled features become more

distinguishable which further contributes to the overall
performance improvement.

How different are the classifier outputs and the final
outputs for detection? Figure 11 shows some qualitative
examples of the ground truth segmentations and results
given by different methods. The segmentation results show
that the refined outputs are overall similar to the classifier
outputs since the confidence given by the classifiers are
often very high, but some segments are modified to ensure
the grammatical correctness.

How does the generalized Earley parser refine the clas-
sifier detection outputs? When the classifier outputs violate
the grammar, two types of refinements occur: i) correction
and deletion of wrong labels as shown in Figure 11a; ii)
insertion of new labels as shown in Figure 11b. The inserted
segments are usually very short to accommodate both the
grammar and the classifier outputs. Most boundaries of the
refined results are well aligned with the classifier outputs.

Why do we use two metrics for future prediction?
The future 3s prediction is a standard evaluation criterion
set up by KGS and ATCRF. However, this criterion does
not tell how well the algorithm predicts the next segment
label. i) At any time frame, part of the future 3s involves
the current sub-activity for most of the times. ii) If the
predicted length of the current sub-activity is inaccurate,
the frame-wise inaccuracy drops proportionally, even when
the future segment label prediction is accurate. Therefore
we also compare against the future segment label prediction
because it is invariant to variations in activity lengths.

How well does the generalized Earley parser perform
for activity detection and prediction? In some cases it
slightly improves over the classifier outputs for detection
(Table 5), but still significantly outperforms the classifier for
predictions (Table 6 and Table 7). The modifications on clas-
sifier outputs (corrections and insertions in Figure 11) are
minor but important to make the sentences grammatically
correct, thus high-quality predictions can be made.

How useful is the grammar for activity modeling?
From Table 3, Table 4, Table 6 and Table 7 we can see that
both ST-AOG and generalized Earley parser outperforms
Bi-LSTM for prediction. Prediction algorithms need to give
different outputs for similar inputs based on the observation
history. Hence the non-Markovian property of grammars is
useful for activity modeling, especially for future prediction.

How robust is the generalized Earley parser? Com-
paring Table 4 and Table 7 we can see that there is a per-
formance drop when the action sequences are more unpre-
dictable (in the Watch-n-Patch dataset). But it is capable of
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improving over the noisy classifier inputs and significantly
outperforms the other methods. It is also robust in the sense
that it can always find the best sentence in a given language
that best explains the classifier outputs.

7 CONCLUSION

We proposed a generalized Earley parser for parsing se-
quence data according to symbolic grammars. Detections
and predictions are made by the parser given the probabilis-
tic outputs from any classifier. We are optimistic about and
interested in further applications of the generalized Earley
parser. In general, we believe this is a step towards the goal
of integrating the connectionist and symbolic approaches.
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